Roots of L-functions of characters over function fields,
generic linear independence and biases

Corentin Perret-Gentil

ABsTRACT. We first show joint uniform distribution of values of Kloost-
erman sums or Birch sums among all extensions of a finite field Fq, for
almost all couples of arguments in F;, as well as lower bounds on dif-
ferences. Using similar ideas, we then study the biases in the distribu-
tion of generalized angles of Gaussian primes over function fields and
primes in short intervals over function fields, following recent works of
Rudnick-Waxman and Keating-Rudnick, building on cohomological in-
terpretations and determinations of monodromy groups by Katz. Our
results are based on generic linear independence of Frobenius eigenval-
ues of ¢-adic representations, that we obtain from integral monodromy
information via the strategy of Kowalski, which combines his large sieve
for Frobenius with a method of Girstmair. An extension of the large
sieve is given to handle wild ramification of sheaves on varieties.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS
Throughout, p will denote a prime larger than 5 and ¢ a power of p.

1.1. Kloosterman and Birch sums. For an integer n > 1, and a € IF;(”,
we consider the Kloosterman sums

Ko = e 5 o)

« p
J:l,...,:crqun
T1...Tr=a
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2 Roots of L-functions over function fields

of integer rank r > 2, as well as the Birch sums
tr(az + 23)
qun = n/2 Z < ) . (2)
xE]F><

Here, we adopt the usual notation e(z) = exp(27miz) for any z € C, and
tr: Fgn — IF), is the field trace.

For convenience, let us define the rank of Big» to be r = 2, and for r > 2,
we let

for =Klpgn  (r=2) or Bij» (r=2) (3)
for every integer n > 1. By the Deligne-Katz equidistribution theorem
| | for Kloosterman sums and Livné’s work | | for Birch sums (see
also | ]), as ¢ — oo the values

[-r,r]c R ;T even

{fgn(a) :a€eF} equidistribute in Q. = {{z eC:lz|<r} :rodd,

with respect to the pushforward try p, of the Haar measure p, on the com-
pact group

SU, :rodd

G,(C), where G, :=
USp, :reven

(e.g. the Sato-Tate measure when r = 2). These statements encompass
bounds on fgn (e.g. Deligne’s bound for hyper-Kloosterman sums), and
the fact that fyn is real-valued whenever 7 is even. Moreover, they can
alternatively be phrased as properties of the “angles” of Kloosterman and
Birch sums, i.e. the

01, .q(x), ..., 00 ¢ q(x) €]0,1], such that

for(x) = ) e(nb; fq(x)) foralln > 1, xeF; (4)

(whose existence follows from deep work of Grothendieck, Deligne, Katz and
others, and will be recalled in due time): they are distributed like the eigen-
values of a Haar-random matrix in G,(C).

Our first main result is the following generic linear independence state-
ment:

Theorem 1.1 (Generic pairwise linear independence). For r > 2 fized, let
f be as in (3), and let

E, :=dimG, +

rank G, {W’ 11 odd

2
2 w 1T even.

For almost all a,b € ¥, that is for

-1 140, (5 )| - - 1P as o)
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of them, the angles
r—1 :r odd

1<j5<
<j<r/2 1T oeven

L Ojrqla), 0j1q(b) with { (6)
are Q-linearly independent. The implied constants depend only on r,p, and
only on r in the case of Kloosterman sums.

Remark 1.2. The restriction on j in (6) is necessary since ZT 0;.¢.4(x) =0,
and if 7 is even, the angles come by pairs: 6,5 ¢ () = —0;, fq( )(1<j<
r/2).

Remark 1.3. Actually, we will more generally prove Theorem for almost

all tuples of ¢ > 1 arguments, when t = o(y/logq) (e.g. t fixed), with (5)

replaced by
70 0dd C') Jog ¢
(¢—1) (1 + Orp <(ql/(tbzr)>> (7)

for an absolute constant C' > 1. The implied constants depends again only
on 7 in the case of Kloosterman sums.

This has several interesting consequences. First, we obtain the joint dis-
tribution of almost all pairs of values of f in extensions of a fixed base field:

Corollary 1.4. For r > 2, let f be as in (3), a Kloosterman or Birch
sum. For all but Oy, ((g — 1)*(log q)q_l/(zE’“)) couples a,b € F\, the random

vector
Xap = ((fq”(a)’ for (6)) ) 1<n<N

(with the uniform measure on [1, N] n N) converges in law as N — o to

(tr(gl)/ﬂ"(gﬂ),

with g1, g2 independent uniformly distributed in a mazimal torus of G,(C).
Ezxplicitly, tr(g;) is distributed like

Z;/:21 2 cos(2mb;) T even

Sicre®) +e(= X521 0;) cr odd
with 0; independent uniform in [0,1]. Equivalently, the distribution of tr(g;)
is that of tr(h]") for any m = r and h; uniform in G,(C) with respect to the
Haar measure. The implied constant in Landau’s notation depends only on
r in the case of Kloosterman sums.

(8)

Remark 1.5. Applying Deligne’s equidistribution theorem and | ; |

would show that (fqn (@+b1),..., fn(a+ bt)> converges in law
aqun, a+b; #0
(with respect to the uniform measure), as ¢" — o0, to a random vector in ¢

distributed with respect to the product measure (try p,)®', when b; € Fyn

Here and from now on, ép will denote the Kronecker symbol with respect to a binary
variable B, i.e. 6p = 1 if B is true, 0 otherwise. In particular, #° °d4d is equal to r if the
latter is odd, and to 1 otherwise.
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X

Fy (fixed) F F Ums1Fgm = Fq
w
a,b

FIGURE 1. The asymptotic setting for Section

are t = o(log(q™)) distinct shifts (see e.g. | |, where the dependencies
of the errors from | | with respect to t are made explicit). However,
this only gives information among values that are explicitly related, by fixed
shifts.

Remark 1.6 (Discrepancy). For the distribution of a single Kloosterman sum
of rank 2, conditionally on a linear independence hypothesis, Ahmadi and
Shparlinski | | also obtained bounds on the discrepancy, using lower
bounds arising from Baker’s theorem. Their results are stated for curves, but
the last paragraph of | , Section 5.2| explains how they readily extend to
Kloosterman sums. Our Theorem shows that their discrepancy bounds
hold for almost all arguments, and using the same technique, a bound on
the discrepancy in Corollary could as well be given.

Another corollary is the following absence of bias among values of Birch
sums and Kloosterman sums in extensions:

Corollary 1.7. Let fyn be either Kl gn (r = 2 even), Bign, or —if r = 3
is odd — ReKl,gn or ImKl, gn. For all but Oy, ((q—1)*(log ¢)q~ ¥/ (*E")

couples a,be F)

¢ » We have

]PngN(fqn(a) < fqn(b)> _ Hi<n<N: {sn(a) < ()}

— 1/2 as N — .

The implied constant in Landau’s notation depends only on r in the case of
Kloosterman sums.

Finally, Theorem also yields the following lower bounds, through the
method of Bombieri and Katz | |. The first one is not explicit and the
value of n is not effective, while the second is weaker but does not suffer
from these issues.

Corollary 1.8. Forr > 2, let f be as in (3). For every e > 0 and all but

Orp ((q —1)2(log q)q_l/(QEr)) couples a,b € Fy, we have:

(1) for every n large enough (with respect to q,r,e,a,b),
| fqn (@) = fon(D)] = qisn(Tilx
(2) when r = 2, for every n =1 large enough with respect to p,

—226337p3 log(4p) log(2n+1/2)

|[fqr(a) = fgn (B)] = (2/77) {q_cp log (24 21E12) __logq

q max(log ¢,2)
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with Gy = 1175 (5.205 + 0.94610g 25 ) (p — 1)*.

Remark 1.9. The second bound in (2) uses Gouillon’s improvement | |
on the Baker—Wiistholz theorem | | instead of the latter. The condition
on n is only to simplify the expression above: the bound in the proof is fully
explicit. Moreover, the first inequality in is valid for any n > 1. We can
also update the lower bound of Bombieri-Katz | , Corollary 4.3(ii)] to
(assuming p > 5):

n 4 1 lo.
KL (a)] > (2/m)q 207 B (2445wt

with C), as above.

1.2. Angles of Gaussian primes over function fields. Recently, Rud-
nick and Waxman | | studied refined statistics of angles of Gaussian
primes p = a + ib € Z[i], after Hecke’s equidistribution result and the works
that ensued. To give motivation for a conjecture they propose, they develop
a function field model where an analogue holds unconditionally.

Explicitly (see | , Section 1.3, Section 6|), consider the quadratic
extension Fy(S) of the function field F,(T), S = /=T, with the norm
N(f(S)) = f(S)f(—=S). The analogue of the unit circle is

S; ={ueF,[[S]]" : u(0) =1, N(u) =1},

and we have a well-defined map U : F,[S]\{0} — Sé, f— f/A/N(f), that
actually only depends on the ideal (f). For an integer k& > 1, the “circle”

1 St : K _ - 1. —
S, can be divided into ¢" sectors (k = |k/2]), Sec(u, k) := {ve S, :v=u
(mod S*)}, which are parametrized by

ueSh, = {ue Riy:u(0) = 1, N@w) =1}, Rg:= (F[S)/(59) . ©)

Rudnick and Waxman start by showing that if £ < n and

Nin(u) := |{p < F,y[S] prime : deg(p) = n, U(p) € Sec(u, k)}|

1

is the number of primes of fixed degree lying in a sector given by u € S -

then there is equidistribution in the sectors whenever xk < n/2:

p < F,[S]| prime : deg(p) =n n q"/n n
Nk,n(u):“ ol ] 5 (p) }|+O<q /2)=q£+0(q /2),
k.q

with an absolute implied constant”. Using a deep result of Katz | |
(based on Deligne’s equidistribution theorem and the computation of a mon-
odromy group), they then get an unconditional analogue | , Theorem
1.3] of their conjecture for Z[i] | , Conjecture 1.2| on the variance of
Ni.,n among all sectors.

2The dependencies of the error with respect to k are not explicit in | |, but keeping
track of them during the arguments shows that the error in the expression for N n(u)

above is O (q"/Qﬁ/n + T(n)l/Qq”/Q/n) (recall that we assume that p > 7), where 7 is the

number of divisors function.



6 Roots of L-functions over function fields

The notion of Chebyshev bias for primes in arithmetic progressions, stud-

ied in depth by Rubinstein and Sarnak | |, was extended to function
fields by Cha | |. Further cases of biases in function fields have been
considered recently | ; ; ; |, particularly in families
of curves.

Similarly, one may ask whether there is a bias in the distribution of prime
ideals among different sectors as above. To do so, for ui,...,ur € S}C’q

distinct, we may look at the R-valued random vector

Xgn(u) = (Xgn(ur),..., Xpn(ug)), where

fn "/n
Xiw(w) = (L5 (Mintur) - T27))
1<n<N

(with the uniform measure on [1, N| n N). The normalization is chosen so
that X, y(u,) is bounded as N — oo (with ¢, k fixed), which will be clear
later on.

We recall that key inputs in | | and | | to study biases finely are
hypotheses about linear independence of roots of L-functions, also known as
Grand Simplicity Hypotheses (GSH). These are very strong statements and
wide open conjectures.

Our second main result is a generic linear independence statement in the
setting above, in the same spirit as Theorem 1.1. It concerns roots

e(ieE,j) (1 <J < d/(E)) ) 03,j € [07 1]a (10)

of (normalized) L-functions associated to characters = of St 4 With conductor
3 < d(2) <2k — 1, where d'(2) := (d(E) — 1)/2 (these will be defined more
precisely in Section 3). The analogue of GSH is:

Hypothesis 1.10. The angles 0= ;, for Z € §]£ g 1<J< d'(Z), are Q-linearly
independent.

Towards Hypothesis , we show:

Theorem 1.11 (Generic linear independence). Assume that p > k and let
t = o(log S}, 4) (e-g. t fized). For almost all subsets S < Siq of size t, that

is for
" Ct logq K
q k,p (4
( ¢ ) (1 + Okyp (ql/(2t(252—3m+1))>> = < " )(1 + ogp(1))

of them, with Cy , = 1 depending only on k,p, the elements
1, 0= ; (EeS, 1<j<d (@)

are Q-linearly independent.

Remark 1.12. Hypothesis would be Theorem with § = S}C,q. This
is a very strong statement, whose validity may be delicate depending on the
relative size of the parameters. Indeed, unlike in the number field situation,
there are examples of families of L-functions over function fields where linear
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independence is not satisfied (although with ¢ fixed, and eventually growing
genus): see e.g. | , Section 6], | , Section 5| and [Li15].

Remark 1.13. One can get the explicit dependency of the base Cj,, with
respect to k,p in Theorem , at the cost of a weaker error, replacing the

latter by Ok,p ((C(k+1)k+1)t log log q

log q
conjecture, one could do so while keeping the strength of Theorem . see

Remark

) with C absolute. Under a group theoretic

Let us now explain how this relates to biases and the random vectors
Xk, n(u) defined above. We adapt classical arguments | ; ; |
to the function field setting, as in | : |, to show:

Theorem 1.14 (Limiting distribution, expected value). The random vector
Xi.n(uw) admits a compactly supported limiting distribution as N — oo with
k < N/2 fized. Namely, it converges in law to a RF-valued random variable
X (u). Moreover, the expected value of the latter is

E(Xx(w) = (~{be i, 0 = w}|/2)

which means that there should be a bias towards sectors parametrized by non-
squares.

L 1200,

1<r<

Theorem 1.15 (Continuity, symmetry, bias). If Hypothesis holds and
R < “T_l is an integer, the distribution of Xy (u) is:
(1) absolutely continuous: there exists a Lebesque integrable function f
on RE such that P(Xy(u) € A) = §, fdx for all Borel subsets A <
RE,
(2) symmetric with exchangeable components around its mean:
for XP(u) := Xi(u) — E(Xi(u)), we have

Xp(u) ~ —XP(w), o(X}(u)

for any permutation o € Sg of the coordinates.

Hence,

lim P(Xix(un) <o < Xin(ur) ) = B(Xu(w) < -~ < Xi(u)r).

N—o0

which is 1/R! if the u; are all squares or all non-squares. If ug is a square
while uy s not, and k > 5, then limy_ IP(Xk,N(ul) < Xk,N(ug)) <1/2.
Remark 1.16. The restriction R < "7_1, rather strong with respect to the
maximum R = ¢”, comes from the fact that the L-functions have finitely
many zeros, in contrast with the number field case.

Hence, our generic linear independence statement, Theorem , implies
the following towards an unconditional Theorem

Corollary 1.17 (of Theorem ). Assuming that p > k, the limiting dis-
tribution Xi(uw) of Theorem is:
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(1) continuous: P(Xg(u) = a) = 0 for any a € RE. In particular, for
u € Sllc,q7 limN_,oo IP’(Xk,N(u) > 0) = P(Xk(u) > 0)
(2) a pushforward of the Lebesgue measure on a torus of dimension

> (log|Sg )%, for any e > 0.

Remark 1.18. Concerning the stronger properties of Theorem (absolute
continuity, symmetry), Devin | | and Martin—Ng | | have shown
that they hold under weaker conditions than full linear independence. How-
ever, we cannot exploit these here since their statements always involve all
the roots/eigenvalues, while results obtained from the large sieve will be
limited to a small subset.

1.3. Prime polynomials in short intervals. Some of the techniques in
| | actually originate from Keating and Rudnick | |, who showed
function field analogues of a conditional result of Goldston-Montgomery on
primes in short intervals and of a conjecture of Hooley on the variance of
primes in arithmetic progressions with fixed modulus.

For A e F,[T] of degree n > 1 and 1 < h < n,

va(A) = > A(f)
fE]Fq[T]
deg(f—A)<h

counts prime polynomials in a “short interval” around A, weighted by the
function field von Mangoldt function A (defined by A(f) = deg(P) if f = P*,
P e F,[T] prime, A(f) = 0 otherwise). The mean value over the centers A
having degree n is

Eqn (vp) = in Z vp(A) = s (1 — 1n> (11)

q A€F4[T] monic q
deg(A)=n
(see | , (2.7), Lemma 4.3]). Keating and Rudnick, | , Theorem
2.1], using another equidistribution result of Katz | | when h < n — 3,

compute the corresponding variance explicitly, obtaining an unconditional
analogue of the Goldston—-Montgomery result mentioned above.
Any monic A € F[T] of degree n can be written uniquely as

B monic, deg(B) =n—h—1

A=T"''B +(C with
deg(C) < h,

and vy, (A) = v, (T"*1 B) only depends on B. This observation allows us to
fix n —h =: m and take n — co. For By, ..., Bg € Fy[T] distinct and monic
of degree m — 1, we can study the R-valued random vector of biases

Xm,N(B) = (Xm,N(Bl)> s 7Xm,N(BR))7 where
m
Xm,N(BT) = (7324—1 (Vn—m (TnierlBr) - Eq,n(Vn—m)>>
q 1<n<N

(with the uniform measure on [1, N] n N), the expected values being those
in (11). Again, the normalization is chosen so that X, n(u,) is bounded as
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N — oo (with ¢, m fixed), which will be clear later on.

In this setting, we obtain results analogous to those exposed in Section
. Let

be the roots associated to the L-function associated to an even Dirichlet

character xy modulo 7™ € F,[T'] (see Section 3 for the precise definitions),
for2<d <m.

Hypothesis 1.19. The angles 6, ;, for x (mod T") even, 1 < j < cond(x)—2,
are Q-linearly independent.

Theorem 1.20 (Generic linear independence). Assume that m is odd, p >
m and t = o(log(¢™™ 1)) (e.g. t fized). For almost all subsets S of size t of
even Dirichlet characters mod T™, that is for

m—1 Ct o m—1
q m,p 1084 (4
( " ) (1 + Opm (ql/(2t(m2)2)>) = < " )(1 + opm(1))

of them, with Cy, , = 1 depending only on p, m, the elements
L by;  (xeS 1<j<cond(x)—2)

are Q-linearly independent.

Theorem 1.21 (Limiting distribution, expected value). The random vector
X, N(B) admits a compactly supported limiting distribution as N — oo with
m > 3 fized. Namely, it converges in law to a RE-valued random variable
Xm(B). Moreover, the latter has mean zero.

Remark 1.22. There is no bias here, unlike in Theorem , simply because
the von Mangoldt weight was kept.

Theorem 1.23 (Continuity, symmetry). If Hypothesis holds and R <
m/2 —1, the distribution of X,,(B) is absolutely continuous, and symmetric
with exchangeable components. In particular,

. 1
J&l_l}nOOP(Xm7N(Bl) <. < XmﬁN(BR)> - =

Towards an unconditional Theorem , we obtain:

Corollary 1.24 (of Theorem ). Assuming m odd and p > m, the lim-
iting distribution X, (B) from Theorem is:
(1) continuous: P(X,,(B) = a) = 0 for any a € RE. In particular, for
B e F,|T] of degree m — 1,

lim P(Xp,v(B) > 0) = B(X,n(B) > 0).

(2) a pushforward of the Lebesgue measure on a torus of dimension

»em (log(qm_l))l_g, for any € > 0.
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Remark 1.25. The assumption that m is odd is technical, to get the integral
monodromy in Theorem . It is anyway mild, since if m is even, one may
as well look at shorter intervals of odd size m — 1.

Remark 1.26. Again, if one wants explicit dependency of m, p in the base of

t in Theorem , at the price of a weaker error, one may replace the latter
m+3\t
by Op,m <(C(m+1)10; q) loglogq) with C absolute.

1.4. Outline of the strategy, previous works, and organization of
the paper. The existence and properties of the limiting distribution under

linear independence hypotheses (Theorems , and ) follow
the methods developed in | ; ; |. The continuity statement
in Corollary , under weaker results than full linear independence, is ob-
tained through an idea of Devin | ; ].

The main results are then Theorems , and on generic lin-
ear independence. Combining his large sieve for Frobenius over finite fields
| ; | with a method of Girstmair | ; |, Kowalski
proved | | that a linear independence condition holds generically in
some families of L-functions of curves over finite fields. This was recently
extended by Cha, Fiorilli and Jouve | | to certain families of elliptic

curves over function fields, where the underlying symmetry is orthogonal
instead of being symplectic.

We use similar ideas to prove Theorems and , with the families of
curves replaced by families of exponential sums or characters. More precisely,
by work of Deligne and Katz | ; |, there are families of ¢-adic

sheaves on G, (resp. on a variety parametrizing primitive characters = or x
as above) such that the (reversed) characteristic polynomial of the Frobenius
acting on a stalk yields the roots (resp. L-function) of the corresponding
exponential sums (resp. characters).

Unlike in | ; |, these are not sheaves of Zy-modules, but of
Oj-modules, for A a valuation on the ring of integers O of a number field.
In the work of Kowalski and Cha-Fiorilli-Jouve, the monodromy structure
is symplectic or orthogonal (the latter being the source of complications
handled by Jouve); here, it is either special linear, symplectic or projective
general linear.

Another difficulty arises in bounding sums of Betti numbers appearing
in the large sieve for Frobenius, because certain sheaves are not defined on
curves nor have tame ramification, as assumed by Kowalski and Cha—Fiorilli—
Jouve. This yields Theorem , and answers in this case a question of
Kowalski (| , Remark 4.8]).

To apply this variant of the large sieve for Frobenius, we also need informa-
tion on integral monodromy groups of the sheaves, whereas only information
about the monodromy groups over C (i.e. after taking a Zariski closure) is
a priori available from Katz’s work | : : : |. This is
overcome using deep results of Larsen and Pink through ideas of Katz (or
more precise results in the case of Kloosterman sums). Unlike in | l,
strong approximation for arithmetic groups cannot be used.
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Remark 1.27 (Frobenius tori). As explained in | , Section 7|, another
way to get generic linear independence results is by applying an effective
version of Chebotarev’s density theorem with Serre’s theory of Frobenius
tori. However, as explained in | , p. 54], controlling the uniformity
with respect to the size of the subsets/tuples considered (crucial for the
questions we consider) is more subtle.

Remark 1.28 (Prime polynomials in arithmetic progressions). In | ],
Keating and Rudnick also study the variance of prime polynomials in arith-
metic progressions, and get as well an asymptotic expression (see | ,
Theorem 2.2]). In one of the ranges, this uses another equidistribution re-
sult of Katz | |. The latter is more complicated, relying on the ideas
developed in | |, because the family involved is not parametrized by an
algebraic variety. While results similar to those of Section could probably
be obtained (see also | |), we leave that to future work for this reason.

In Sections 2, 3 and 4, respectively for Kloosterman /Birch sums, Gaussian
prime polynomials, and prime polynomials in short intervals, we:

(1) Give the cohomological interpretations due to Katz, which gives rise
to the eigenvalues from (1), (10) and (12) respectively.
(2) For Gaussian prime polynomials and prime polynomials in short in-

tervals:
(a) Show the existence of the limiting distributions (Theorems
and ).
(b) Prove the additional properties of the distributions under Hy-
potheses and (Theorems and .
(3) Prove Corollaries 1.4 and 1.8, and Corollaries , , from the
generic linear independence Theorems 1.1, and respectively.
Finally, Sections 5, 6 and 7 are dedicated to proving these generic linear

independence statements.

1.5. Notations. For a prime p > 7 and a field E with ring of integers O,
we let Spec;(O) (resp. Spec,(O)) be the set of all non-zero prime ideals
(equivalently, valuations on O) having degree 1 (resp. not lying above p),
and Specy ,(O) = Spec; (O) n Spec,(O). If X € Spec; ,(0), we denote by
Ey, O, the completions, and Fy = O/ the residue field. Note that Fy =~ F,
where £ is the prime above which A lies.

1.6. Acknowledgements. The author thanks Lucile Devin, Michele Fornea,
Javier Fresan, Florent Jouve and Will Sawin for helpful discussions and com-
ments. Will Sawin in particular provided a better way to bound the sums
of Betti numbers in the large sieve, leading to stronger results; the idea and
proof of Theorem are due to him. We thank the organizers of the
2019 Shaoul fund IAS Function field arithmetic workshop in Tel-Aviv for pro-
viding the opportunity for some of these exchanges. We are grateful to the
anonymous referees who provided helpful and detailed comments to improve
the manuscript. The author was partially supported by Koukoulopoulos’
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2. KLOOSTERMAN SUMS AND BIRCH SUMS

2.1. Cohomological interpretation.

Theorem 2.1 (Deligne, Katz). Let E = Q(Cap), with ring of integers O.
For every A € A := Spec,(0), there exists:
(1) for every integer r = 2, a lisse sheaf Kl x on Gpx, of free Oy-
modules, of rank r, pure of weight 0, such that for every finite field
Fy of characteristic p and x € F,

tr (Frobs, | (Kl:,0),) = Klg(@),

the normalized hyper-Kloosterman sum of rank r defined in (1). More-
over, the family (ICly x)aen forms a compatible system’.

(2) a lisse sheaf Biy on Gy, of free Ox-modules, of rank 2, pure of
weight 0, such that for every field Fy of characteristic p and x € F,

tr (Frobg, | (Biy),) = Big(z),

the normalized Birch sum defined in (2). Moreover, the family (Biy)ea
forms a compatible system.

Proof. (1) This is | , Theorem 4.1.1/Section 8.9]. To normalize by
a Tate twist, we enlarge the ring of definition to Z[(4p]|, which is
enough since /p € Z[(4p] by the evaluation of quadratic Gauss sums

(see | , page 11.0]).

(2) This is contained in | , page 7.12] (see also | , Part 3]),
along with | | for the definition over Oy of the (-adic Fourier
transform.

O

The roots of the characteristic polynomial of Froby, acting on the stalks
at x € Fy of any of the sheaves in the system (Kl x)aea, resp. (Bix)ien,
are then the e(6; q(x)) € C (1 < i < r) giving (1), when f = Kl, 4, resp.
f=Bi, (r=2).

We now prove the three corollaries of Theorem (generic linear inde-
pendence of the roots) stated in Section

2.2. Joint uniform distribution: Corollaries and . Leta,beFy
be such that the conclusion of Theorem holds. By the Kronecker—Weyl
equidistribution theorem (see e.g. | , Section 4.1] or | , Appendix

B|), the random vector

(nei,f,q(a)a nbjrq(b) 1 1<1i,j < 7")

n<N

3We recall that this means that for every A € A, every finite field F, of characteristic
p and every x € F;, the reverse characteristic polynomial det(1 — 7 Frobg, | (Kl-x),) €
O[T has coefficients in E that moreover do not depend on \; see | , Section II].
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equidistributes in [0,1]*" as N — oo. It follows at once by (1) that X,
converges in law to a pair of independent random variables distributed like

(8) as N — oo.
Finally, the equivalence of the distribution of (8) and traces of large enough
powers of matrices in G, (C) is the content of | , Theorem 2.1].

Corollary 1.7 is then an immediate consequence, by applying the portman-
teau theorem to the random variable tr(g;) — tr(g2) (or its real/imaginary

parts), which is symmetric around its mean 0. O
2.3. Lower bounds: Corollary . We follow the method of Bombieri
and Katz | , Sections 3-4], based on the subspace theorem from | :

| and the Baker-Wiistholz theorem | |.
Let a,b € Fy be such that the conclusion of Theorem holds. By (1),

we have
T

F(n) := fyr(a) = fgn () = Y (e (ni p.4(a)) — € (nB 1,4()) ).

i=1
The Skolem-Mahler-Lech theorem (see | , Theorem 2.1(i)]) shows that
if none of
eifq(x)> eifq(a) .
el == (xefa,b},1<i<j<r), el =] (1<ij<r)
<9j,f7q(33) 6;.7.4(0)

are roots of unity, which holds by linear independence, then there are only
finitely many n (with a,b,r, ¢ fixed) such that F(n) = 0.
The subspace theorem [ ; | (see | , Theorem 3.1]) shows

that, after multiplying by ¢" nist (i.e. de-normalizing), for every n > 1 large
enough (with respect to the roots 6; ¢4, i.e. with respect to a,b,,q,¢€), either
F(n) = 0, or F(n) satisfies the lower bound of Corollary . With the
above, this proves the first part of the corollary.

For the second part, we assume that r = 2. For any integers kg, k1 € Z
and 6, 01 € [0,1], we have

| cos(2nmly) — cos(2nmhy)| = 2| sin(nw(bp + 01)) sin(nw(6y — 61))]
1
=2 H |sin(nmr; — k;m)|, 7 = 00+ (—1)76;
j—O

2 .
> 2 H ‘mTT] il = H Inlog(e(r;)) — kjlog(—1)],

where the 1nequahty holds if k; is chosen to minimize |n7; — kj|.

We can now apply the Baker—Wiistholz theorem | , Theorem, p. 20|
as in | , Section 4|, or its improvement with respect to the numerical
constants by Gouillon | |, giving the first and second expressions in
Corollary . As the arguments are essentially the same, we only give
the second one. If 1, 6y, 61 are linearly independent, then | , Corollary
2.2] shows that this is

2 4 1.888
4
> [ [exp <—9400 (3 317+~ +0.946log d> d thj) . (13)
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where A; is any real number satisfying log A; > max(1, h(e(7;)), |75|/d, 1/d),
no k) 1000 284
N — ) = —+ 14
h; max(log(ed—i—dAl), 1 , 498 + ¥ + 210gd>,
d [Q(e(70), e(r1)) : Q]/2,
for ho the absolute logarithmic Weil height. We have ho(e(7;)) < ho(e(fo))+
ho(e(el)).

Let us now assume that (6o,61) = (6 r4(a),0;54(b)) are moreover an-

gles of exponential sums (1). Then ¢/2e(+6;) is an algebraic integer, so
ho(e(7;)) < loggq. Regarding the degree, we have 1 < d < (p —1)/2 as in
[ , Proof of Corollary 4.3|, because Kloosterman/Birch sums are sums
of pth roots of unity. Thus, we may take 4; = max(qg, €?) and

M +1/2 —1
hj < max <log (" n ”+/> ,1000, 782 + 1421og ¥ ) .
e Aj 2

Then, (13) is

2 —1
= —exp (—1175 <5.205 +0.946 logp 5 ) (p — 1)*h max(log q, 2)) ,
T

where b — max <log (g n %) ,1000, 782 + 142 log %) If p is fixed and

n is large enough with respect to it, this gives the expression in Corollary

This yields the result by Theorem . The argument is essentially

the same to lower bound a single Kloosterman sum with Gouillon’s result,

with the analogue of (13) having a leading factor of 2/7, no product, and
Ap = max(q/2,e).

O

3. ANGLES OF GAUSSIAN PRIMES

3.1. Definitions and cohomological interpretation.

DEFINITION 3.1. Let ¢ be an odd prime power and k > 2 be an integer. A
super-even character Z modulo S* over [F, is a character of

1 21 /(R
Shy ™ Rug/Hy,  Hio= (F[S%)/(5%)
(see (9)). The Swan conductor of a non-trivial Z is the maximal (odd)
integer d(Z) such that = is non-trivial on (1 + (S4®)) /(S*) < Ry, The
character = is primitive if d(Z) = 2k — 1, with k := |k/2]. The L-function
of a non-trivial = is
~1
LET) = [] (1-=P)rer) . (14)
P prime

monic

P(0)#0
Theorem 3.2 (Katz). Let F, be a finite field of odd characteristic p, k > 2
be an even integer,
log k

10gp> < Q(Cpoo)
with ring of integers O, and let A € A := Spec,(O).

E=Q<C4pr:1<r<1+



Roots of L-functions over function fields 15

(1) There exists a unipotent group Wy, oqq over Fy, such that Wy, oqq4(Fq) =
S}C,q (the group of super-even characters, by duality), as well as an
open set Primy,_oqq © Wi, oda such that Primy oqq(Fq) ts in bijection
with primitive super-even characters modulo S* over F,.

(2) There exists a lisse sheaf Gy on Primy oqqa of free Ox-modules,
of rank r = 2k — 2, pure of weight 1, such that for every = €
Primy, oq4(Fq), we have

det (1 — T'Froby= | k) = ———+~

which is a polynomial of degree d(Z) = r+1. In particular, the family
(Gr 2 )aea forms a compatible system.

(3) The Tate twist F x = Gix(1/2) is a lisse sheaf of free Ox-modules
on Primy, oq4, pure of weight zero, of rank d(Z) — 1, with symplectic
auto-duality.

Proof. These are the contents of | , Section 2] (see also the constructions
in | , Sections 1-4]). O

In particular, the eigenvalues of Frobg, acting on the stalks of F ) at
super-even primitive =, which are free Oy-modules of rank 2x — 2, yield the
eigenvalues e(+6= ;) € C from (10), such that

E[ (1 —/qe(0=5) ) (1 - \/516(—95,j)T>

= (1—=T)det(1 - /qT©z), with Oz € Spy=)_1(C).

=

[0

3
Il

3.2. Existence of the limiting distribution. We start with an explicit
formula for X, v (u).

Proposition 3.3. For allue S}“ and n < N, we have

Xpn(u), = _22 Z_l Z =(u) cos(2mnb=z ;)

k/2 k
1 .32 _ q T(n) kq
—0n even|{b € Sp 1 b —u}|—|—0< 77on +qn/4>,

with an absolute implied constant. Moreover, |{b € S}W :b? = u}| € {0,1} and
in the expression above, =(u) cos(2mnbz ;) may be replaced by Re(e(fz j)E(u)).

Remark 3.4. Almost all (i.e. a density 1+ O(1/q)) super even E € S kg Dave
conductor 2k — 1, but since we look at the N — o0 limit, we cannot restrict
the sum in Proposition to those characters only as in | , Proof of

Theorem 6.7] (with a ¢ — oo limit).
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Proof. By | , Lemma 6.4, Section 6.6], we have

Rk,n(u)qﬂ 5u=1qn
XkN - _Z tr@n qn/2 o qn/2 ’
=2#1

where, by the prime polynomial theorem | , Theorem 2.2],

Rk,n(”) = Z A(f)(SU(f)ESec(u,k)

feFq[S] monic
not prime

deg(f)=n

n/3
n q">1(n)
= Op even’y Z 5U(P2)eSec(u,k) +0 ( n ) .

P monic
prime

deg(P)=n/2

By the function field analogue of Dirichlet’s theorem on primes in arith-
metic progressions | , Theorem 4.8], if n is even,

q"n
~ogn :E] OU(P2)eSec(u,k)
q P monic

prime

deg(P)=n/2

= *22732 > D OP=a(mod s¥)

aeRy 4 P monic

2_ prime
a*=u (mod Hy) deg(P)=n/2

This is furthermore

K 1 n/2 n/4k
-~ X <|R |(7]1/2+O<qn))
q (LERk’q k.q

a?=u (mod Hy)

1 q~k
= —|{a€ Ry, :a®=u(mod Hk)}|<|H | +O(qn/4)>
k| Ri.q
= —\{beSi7q:b2=u}|<l+O< qn/f)).

Note that in odd characteristic, the cardinality \S}W\ = ¢" is odd, so the
2 is injective, and |{b e S}cq :b? =u}| e {0,1}.

: 1
function (z € S§p ) — =
Hence,

Su=19" q"7(n)
XkN = — Z tr@" - +0 ( -
el q"/? q"/%n

k
—0n even|{b € Sllc,q b= ’U,}’ (1 +0 ( n/4>>

which gives the result after splitting the sum over characters = depending
on the conductors d(Z), which are odd integers. The last assertion follows
from the invariance of the sum under = — =. U

Proof of Theorem . The existence of the limiting distribution goes al-
most exactly as in | , Lemma 3.1, Theorem 3.2| (based on | |). Let
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Xp.n(u) be the random variable on [1, N| defined by the right-hand side of
the expression in Proposition 3.3, but without the error term. Let moreover

Vi={(E,j):EeSt, E41, 1<j<d@) (15)

There exists an explicit continuous function g ,, : (R/Z)V — R such that

Koy (u) = (g (b= 2 (E5) V) )

Note that gy, is bounded is (when k,q are fixed): each component is
bounded by 2kq".

By the Kronecker—Weyl equidistribution theorem, (nf=; : (Z,j) € V), _y
converges in law (as N — o) to a random vector equidistributed in the
closure T of the torus

- {n(ag,j)(aj)w ‘ne Z} c (R/Z)V. (16)

It then follows from Helly’s selection theorem | , Theorems 25.9-10| that
X, n(u) converges in law to a random vector Xj(w) which corresponds to a
measure ji o, satisfying

S @ (@) = | (o gn)(@)ia a7)

n<N.

for every bounded continuous f : Rf — R. The limiting measure Mk 18
compactly supported from the boundedness of gi ., (k,q fixed).

In particular, there is convergence of the moments, which allows to com-
pute the expected value by noting that

1 & f-1 B N
= N Ew) Y cos(2mnbz)| « S N2 g
f=2 =1 =e§i n=1
d(Z)=2f—-1

3.3. Properties of the limiting distribution under (generic) linear
independence. For the next properties, we continue to use the methods of
Rubinstein—Sarnak | | and others, in particular by studying characteris-
tic functions.

Lemma 3.5 (Fourier transform). For uy,...,ugr € S,l€ g distinct, let py o, be
the measure associated with the R-dimensional random vector Xi(u). Its
Fourier transform

L (t) = f eiit'md,uk’u(:n) (te RR)
RR

is given by
exp (it - b (u J H H exp (22’ Re (e(z;)t - E(u)) )dw,
: _GSl

d()2f1

n:]|
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where T' is the torus (16) and by(u) := (|{b € Sllc,q (0 = u}]/2)1<r<R
E(uw) := (E(uy))1<r<r- If Hypothesis holds, then

fuku(t) = exp (it - by,(u HH [ H@t-Ew), (18
f=27=1 "GSl.q
d(E):Z}Ll

where Jo(z) = %Sg cos(zsint)dt is the 0th Bessel function of the first kind.

I

Proof. The first statement is a direct consequence of Proposition and
(17). For (18), under Hypothesis the torus I' is maximal and the integral
splits as a product of integrals of the form

f exp <2i Re (e(zj)t - E(u)) )dej = Jo (2|t - E(u)])
R/Z

by | , Lemma C.1]. O

We now prove Theorem about properties of the limiting distribution
under Hypothesis

Proof of Theorem . To show that Xj(u) is absolutely continuous, it is
enough to show that §gx [/ix(t)|dt < 00 (see | , Lemma A.8(b)]). To
do so, we partly follow the method of | , Section 4]. Since we assume
Hypothesis , we may use (18) from Lemma 3.5: we have
r—1
-1
el < TTTT TT ez < | [T1e- s |
f=2j=1 HES}C q =ZeS
d(E)=2f-1
_r-l
4
D )P
[S1(8)] eon(t)

where
Si(t):={=E¢€ S%mq primitive : [t -ZE(u)| > 1} c S:={E€ S%,W primitive},

since |Jo(z)] < min(1,4/2/(7|z])) for all z € R (see | , Lemma C.2]). If
teT :={teRR:|S(t)] = 1}, we get

1 -
SO I NIET

ZeSi(t) ZeS

= Ztrr"slé E

T"I’_

By the orthogonality relations and Mé&bius inversion,
1 = — =
EP Z =(up)E(ur) = 1 2 2 = (1) E ()

K
q 5uT:uT/ . 5uT:uT/

S| 1-1/¢
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Since the wu; are distinct, it follows that

1
S E@PE R i IS > 1
[91(2)] ZeS (t)

Therefore, if t € T, then |fig4,(t)] < |[t]|~"Z . On the other hand, if ¢ ¢ T,
the same argument shows that

i.e. RF\T is bounded. It also contains a neighborhood of 0 since it contains
the finite intersection (Nz.g{t € R® : [t - Z(u)| < 1} of open sets containing
0.

Thus, there exists € > 0 such that

R N _ k=1
f na(®)dt < f it (8)|dt + f 8] ~“7 dt,
R ltll<1 RR\B. (0)

and the second integral converges when x — 1 > 2R (see | , p- 22]).
This concludes the proof of

Concerning (2), the symmetry /exchangeability follow from the expression
( ) for ﬂk,u~

The last statements of the theorem follow from the previous ones: since
[k is absolutely continuous, A = {x € RE : 2y < .-+ < zp} is a continuity
set, so that by the portmanteau theorem,

Jim P(Xn(un) <+ < Xin () = ieu(A).
O

Finally, we prove Corollary (unconditional properties of the limiting
distribution) assuming Theorem on generic linear independence.
Proof of Corollary
(1) It suffices to show it when R = 1, i.e. that the random variable
Xj(u) is continuous for every u € Sl kg We follow the argument in
| , Proof of Theorem 2.2| (see also | , Proposition 2.1]).
By Wlener s lemma, it suffices to show that

hrn f | g (1) 2dt = 0. (19)

By Lemma 3.5, |/igy( ‘Sr exp (itg(x)) d

v fe
2 2 2 Z cos(2mz;)=(u).
f=1j=1" =§}
»q
d(E)=2f-1
By Theorem , there exists Z € S,lg and 1 < j < d'(Z) such that
0= ; ¢ Q. It follows that the function ¢ : T’ — R is analytic and non-
constant, since =(u) # 0 (being a root of unity). Thus, the scaling
principle | , VIIL.2, Proposition 5] shows that | ,(t)| < [t|~¢
for some constant o > 0, where « and the implied constant can
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depend on all parameters but ¢. Thus, (19) holds, using the trivial
bound /i, (t)] < 1 around 0.

(2) This is a consequence of the proof of Theorem : T is a subtorus
of (R/Z)V, with V as in (15)), and if the set of the 0= ; ((Z,7) € V)
contains at least t linearly independent elements, then dimT" > ¢. By
Theorem , the latter holds whenever ¢t = o(log |S,1€’q\).

O

4. PRIME POLYNOMIALS IN SHORT INTERVALS

4.1. Definitions and cohomological interpretation.

DEFINITION 4.1. Let @ € F,[T] be non-constant.

— A Dirichlet character x modulo @ is a character of (IF[T"]/(Q))*.

— The character x is even if it is trivial on Fy.

— It is primitive if it is not induced from a character modulo a proper di-
visor @' | @ through the natural map (F,[7]/(Q))* — (F,[T]/(Q"))*.
The conductor of x is the monic divisor Q' | @ of smallest degree
such that  is primitive modulo @’.

— As usual, we may extend x as x : F,[T] — C by defining x(f) =

x(f (mod Q)) if (f,Q) =1, x(f) = 0 otherwise.
— The number of Dirichlet characters modulo @ is denoted by ¢(Q).

The number of even (resp. primitive, even primitive) such characters

is o™(Q) = (Q)/(q — 1) (resp. ¢prim(Q), Piim (Q))-
— The L-function of x is

L7 = [] (1—X(P)Tdegp)_1.

P prime
monic

P1Q

We recall that if deg(Q) = 2 and x # 1, then L(x,T) is a polynomial
(rather than a formal power series) of degree deg(Q)—1 (see | , Propo-
sition 4.3 and p. 130]).

If x is even, then L(x,T) has a “trivial” zero at 7' = 1. As in | ,
(3.34)], we define Ay, = dy even, Which allows to factor

L(X7T) = (1 - )‘XT)L*(XvT)7 L*(X7T) € ]FQ[T]

If x is primitive, Weil’s work on the Riemann hypothesis over finite fields
(see | , Chapters 4, 5]) shows that

L* (X?T) = det(l - \/aT@X)7 @X € Udeg(Q)—l—/\x(C)? (20)
and we let
e(ex,j)a (1 < j < deg(Q) -1- )‘X)’ Hx,j € [07 1]’

be the eigenvalues of ©} 1 This is also reflected in the following result:

Theorem 4.2 (Katz). Let F, be a finite field of odd characteristic p, m > 2
be an integer,

logm

E=Q <<m—27<4pT I<r<1+ logp> - Q(pragn)
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with ring of integers O, and let A € A := Spec,,(0).

(1) There exists a unipotent group W, over F), such that Wy, (IFq) is the
group of even characters modulo T™ € Fy[T'], as well as an open
set Primp, < W, such that Prim,,(F,) is the set of primitive even
characters modulo T™.

(2) There exists a lisse sheaf G, x on Primy, of free Ox-modules, of rank
m — 2, pure of weight 1, such that for every x € Prim,,(F,),

det (1 — T Frobyy | Gma) = L*(x, T),

which is a polynomial of degree m — 2. In particular, the family
(Gm.a)xen forms a compatible system.

(3) The Tate twist Fp, x = GmA(1/2) is a lisse sheaf of free Ox-modules
on Prim,,, pure of weight zero, of rank m — 2.

In other words, the eigenvalues of /g0, (the zeros of L*(x,T)) are the
eigenvalues of Frobp, acting on the stalk of G, x at x.

Proof. This is essentially the contents of | , Sections 1-4|. The addition
of (;,_o is not necessary at this point, but will be useful in Theorem .o

4.2. Existence of the limiting distribution. We start with an explicit
formula for X,, n(B), and proceed as in Section

Proposition 4.3. Under the notations of Section , we have, for B €
Fo[T] monic of degree m — 1,

m f—2
o 1
f=3x (mod T™) j=1 1
even
cond(x)=T"

where B* € T[T is the reflected polynomial defined by B*(T) = T4eBB(1/T).

Proof. By | , (4.22)],
1
XonBl = = Y X(BYn, ).
q
X (mod T™)
even
Ynx) = D, AMHX() = —¢"Pr(e)) -1,
feFq[T]
deg(f)=n
where the last equality is the explicit formula for ¢ (see | , (3.38)]),

obtained by taking the logarithmic derivative on both sides of (20). Thus,

1 B 1 _
Xm,N(B)n = “n2 2 X(B*) tr(@x) Y Z X(B).
q X (mod T™) q X (mod T™)

even even
The result follows after splitting the first sum according to the conductor
of x and applying the orthogonality relations in (F,[T]/(T™))*/F; to the
second one. O
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Then, the Proof of Theorem is exactly like the proof of Theorem
(see Section 3.2). As in Proposition 3.3, one may replace the e(6, ;) in
Proposition 4.3 by cos(276, ;) since X, nv(B)n € R.

4.3. Properties of the limiting distribution under (generic) linear

independence. Again, the proofs of Theorem and Corollary are
exactly like the proofs of Theorem and Corollary respectively, in
Section

5. AN EXTENSION OF THE LARGE SIEVE FOR FROBENIUS

In the next two sections, we set up the tools to prove the main Theorems
, and on generic linear independence. As outlined in Section
, the strategy follows that of previous works and is the following:

(1) Obtain information about integral monodromy groups of reductions
of sheaves of Oy-modules from Theorem and 3.2, for a set of
ideals/valuations A € Spec; ,,(O) of positive density.

(2) Use a variant of the large sieve for Frobenius to show that for all
such A, the (splitting) fields generated by the roots (a; ¢, (), e(f= ;)
or e(fy ;)) are maximal for almost all tuples of arguments x (resp.
=, x) for exponential sums (resp. (super-)even characters).

(3) Apply Girstmair’s work to show that implies the desired linear
independence.

The first two points and the variant of the large sieve for Frobenius are
implemented in this section, and the third point in Section

Remark 5.1. Note that | ; | dealt with symplectic and orthog-
onal monodromy types. Here, we need to consider special linear and sym-
plectic ones, which will correspond to splitting fields with Galois groups &,
(the full symmetric group), or Wy, < Gy, the subgroup with order 2"n! of
permutations of n pairs (the Coxeter group By).

Remark 5.2. We consider ideals of degree 1 so that Fy = F, and consider-
ations on the sheaves mod A\ can be reduced as much as possible to exist-
ing arguments, for the large sieve or computations of integral monodromy
groups. This is actually not a restriction because Spec; ,(O) has natural
density 1 in Spec(O) (| , Corollary 2, p. 345, Proposition 7.17])

Remark 5.3. Since we considered Tate-twisted/normalized sheaves of O,-
modules from the beginning (which also forces the determinant to be trivial
and the arithmetic/geometric monodromy groups to coincide, for exponen-
tial sums and super-even characters), we will not encounter the difficulty
observed in | ; | that the normalized characteristic polynomi-
als may be defined over a quadratic extension of the base field, with the
possibility of a different Galois group. This was overcome in ibid. by look-
ing at squares of the roots, and showing that their Galois group was still
maximal from a study of additive relations, in addition to the multiplicative
ones.
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5.1. Integral monodromy groups. The lisse sheaves F) of free modules
on a variety X given by Theorems 2.1, and correspond to continuous
representations py : w1 (X,7) — GL,-(O,), for 77 a geometric generic point,
such that for every z € X (F,), if Frob, , € m1(X,7)* is the geometric Frobe-
nius conjugacy class at x, then py (Frob, ,) € GL,(O,)* gives the action of
Frob, on (Fy),.

DEFINITION 5.4 (Monodromy groups). The geometric and arithmetic mon-
odromy groups of py are respectively

Zar ————Zar

G5 = pa (vr%‘”m(X , ﬁ)) < Gy =y (m (X, ﬁ)) < GL,(Ey),

where %% denotes Zariski closure in GL,(E)). By reducing modulo A,
we also obtain representations gy : m1(X,7) — GL,(F)), and we define the
geometric and arithmetic integral monodromy groups of p) as the monodromy
groups

GSo™ = py (W%eom(K ﬁ)) < Gy = pa (ﬂl(X,ﬁ)) < GL,(Fy)

of px. If the adjective “projective” is added to those groups, one refers to
their image with respect to the projections GL, — PGL, (over E) or F)
respectively).

5.1.1. From monodromy to integral monodromy. The determination of inte-
gral monodromy groups may be more challenging that their counterparts
over E), since they have less structure (under purity assumption, the con-
nected component at the identity of G%\eom is a semisimple algebraic group).

Fortunately, as explained by | , Section 7|, one may use deep results
of Larsen—Pink | ; | to conclude (roughly) that if the monodromy
over F is as large as possible, then the same holds for a density 1 of the
integral monodromy groups.

Katz’s argument is given for sheaves of Zy-modules, but carries over more
generally to sheaves of Oy-modules: we spelled out the details in | ,
Section 5.2|, and the conclusion reads as:

Theorem 5.5. Let X be a smooth affine geometrically connected variety
over Fp, let E < C be a Galois number field with ring of integers O, and let A
be a set of valuations on O of natural density 1. Let (Fx)xen be a compatible
system with Fy a lisse sheaf of free Ox-modules on X. We assume that

there exists G € {SLy,,Sps,} such that for every A € A, the
arithmetic monodromy group of Fy is conjugate to G(E)).

Then there exists a subset A, = A n Specy ,(O) of natural density 1, de-
pending on p and on the family, such that Fy has geometric and arithmetic
integral monodromy groups conjugate to G(Fy) for all X € Ay,.

Remark 5.6 (Implied constants). The dependency of the sets of valuations
on some of the variables p, k, m in Theorems , and below will
give dependencies on those of the implied constants in the final results.



24 Roots of L-functions over function fields

Remark 5.7 (Strong approximation). Another method to get information on
integral monodromy groups from the transcendental ones is through strong
approximation results for arithmetic groups, as explained in | , Section
9] (see also | , Section 5]); this is for example used in | |. In those
cases, | | (a generalization of | ; |) allows to show that the
integral monodromy is large for all but finitely many primes. Moreover, by
also using results of | |, it avoids the classification of finite simple groups,
unlike | ; .

However, this requires that the sheaves F) on X may be formed over
the analytification X?2": a sheaf F?" of finitely generated O-modules is con-
structed on X", whose extension of scalars to O, corresponds to the an-
alytification of Fy, and strong approximation can then be applied to the
monodromy of F*" in G(O) to yield the result. This can be done in the case
of families of L-functions considered in | ; |, but a priori not for
the sheaves from Theorems 2.1 and (one may think about Artin—Schreier
sheaves, i.e. Kloosterman sheaves of rank 1, as a first example)

5.1.2. Kloosterman and Birch sheaves. Combining Theorem with the de-
termination of monodromy groups over E) by Katz, we obtain the following;:

Theorem 5.8 (Kloosterman sheaves). In the setting of Theorem 2.1, there
exists a subset A, of Spech(O), of natural density 1, such that for every
A € Ay, the arithmetic and geometric integral monodromy groups of Kl x
are equal and conjugate to SL,(Fy) if r is odd, Sp,(Fy) if r is even.

Proof. This follows from Theorem and the determination of monodromy
groups over E) contained in | , Chapter 11]. O

Remark 5.9. By work of Hall | | or J-K. Yu (unpublished) when r = 2,
and the author | | for any r > 2, one may actually take

Ay p = {A € Spec; ,(O) above £ : £ >, 1}. (21)

In particular, the densities of elements A, , with bounded norm are bounded
from below independently of p.

Theorem 5.10 (Birch sheaves). In the setting of Theorem , there
erists a subset A, of Specljp((’)), of natural density 1, such that for every

A€ Ay, the arithmetic and geometric integral monodromy groups of Biy are
equal to SLo(TF)).

Proof. This follows from Theorem and the determination of monodromy
groups over Ej in | , page 7.12]. O

5.1.3. Primitive super-even characters.

Theorem 5.11. In the setting of Theorem , assuming that k > 4,
there exists a subset Mg, < Specy ,(O) of natural density 1 such that for
every A € Ay, the arithmetic and geometric integral monodromy groups of
G are equal and conjugate to Spy,._o(F)y).
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Proof. This follows from Theorem and the determination of monodromy
groups over F) in | , Theorem 2.5] (using results from | , page 3.10]).
O

5.1.4. Primitive even characters mod T™.

Theorem 5.12. In the setting of Theorem , assuming that m =5 s
odd, there exists a subset Ay, < Specy ,(O) of natural density 1 such that for
every X\ € Ny, p, the projective arithmetic and geometric integral monodromy
groups of G, \ are conjugate to PSLy,_o(FFy).

Proof. By, | , Theorem 5.1],
SLm—Z(C) < Ggeom(gm,/\) < Garith(gm,/\) < GLm—Z(C)a

whence PGgoom(gm,)\) = PGarith(gm,)\) = PGmeQ(C)

However, projective representations are not directly handled in Theorem

. Instead, we note that if A\ € Spec, ,(O) is above £ { m — 2, then £ =1
(mod m — 2) (by the characterization of ideals of degree 1 in cyclotomic
extensions), so Hensel’s lemma implies that every element of O, has an
(m — 2)th root, whence PGLy,—2(0)) = SLy,—2(05,).

If G, \ corresponds to a representation py : m1(X,7) — GL;,—2(0,) and
7w : GLy,—2 — PGL,,—2 is the projection, we get in this case a continuous
representation m o py : m(X,7) — SLp—2(O,) with transcendental arith-
metic and geometric monodromy groups isomorphic to SL,,_2(C). We may
then apply Theorem to get that the arithmetic and geometric integral
monodromy of 7 o py are SL,,_2(Fy) = PGL,,_2(F)) for a subset of density
1 of Specy ,(O). Since im(7 o py (mod \)) = 7(im px (mod A)), this proves
the assertion on the projective monodromy groups of (G, x)a. O

5.2. Large sieve for Frobenius, with wild ramification. Next, we need

a version of the large sieve for Frobenius, originally developed in | | (see
also | ; D).
In these works as well as in | |, the sieve applies to sheaves of Fy-

modules on a variety X over [, that either:

(1) are compatible systems, with X a curve;

(2) are tamely ramified;

(3) have monodromy group of cardinality prime to p, a stronger condition
than the previous one.

For Kloosterman and Birch sums, applies. However, for super-even char-
acters, the variety is not a curve, and the sheaves are a priori not tamely
ramified, which rules out (2). Concerning (3), note that for £ = Q((,~) and
A € Spec(Q), the prime p always divides |SL,(Fy)| and |Sp,(Fy)| (if r is
even).

5.2.1. Extension of the large sieve for Frobenius. Instead, we give an exten-
sion of | , Theorem 3.1|/| , Theorems 4.1, 4.3| that works in
this case and answers the question in | , Remark 4.8]. To bound the
sums of Betti numbers that appear, we give two arguments:
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(1) One, Theorem , involving sums of Betti numbers associated to
tensor powers of the sheaves, inspired by | , Section 4], | ,
Theorem 9.2.6], | , Lemma 5.2|, and an effective/modular ver-

sion of a theorem of Burnside on irreducible representations con-
tained in tensor powers of faithful representations.

(2) Another, Theorem , provided by Will Sawin, reducing to the
tame case (where a result of Deligne [I1131] on the Euler characteristic
of tamely ramified sheaves can be applied) by exploiting the presence
of a compatible system. This gives a much stronger bound, but with
less explicit constants.

DEFINITION 5.13. Let X be a smooth affine geometrically connected al-
gebraic variety over F,, E be a number field with ring of integers O, let
A, A€ Specy ,(0), and let F be a lisse sheaf of R-modules on X, where

R =Qy, Oy, 0Ax®0y, Fy, or F\®F,,. We define the sum of Betti numbers

2dim X
oo(X,F)= ). rank Hy(X,F),
i=0
where the rank of an R-module is defined as its dimension over the total ring
of fractions of R (recall that these cohomology groups are finitely generated
by | , Exposé 1, Théoréme 4.6.2]).
If X is a curve and R = O), we moreover define

cond(Fy) =1 — xo(X,Qp) + ZZSwanz(]:,\)

to be the quantity in | , (4.1)] (see also | , Chapters 1-2|), where
the sum is over “points at infinity” of X.

Theorem 5.14. Let X be a smooth affine geometrically connected algebraic
variety of dimension d over F,. For E a number field with ring of integers
O, let A < Specy ,(O) with lower density

: <
A := liminf (e A: N < L]

0.
fha L/logL ~

For every A € A, let Fy be a rank r lisse sheaf of Fy-modules on X, corre-
sponding to a representation

px (X, 7)) — GLr(F»), (22)
form a geometric generic point. We assume that there ezists G € {SL,, Sp, }
such that either:

(i) the arithmetic and geometric monodromy groups of py are equal and
conjugate to G(Fy) for all A€ A, or;

(ii) the projective arithmetic and geometric monodromy group of py are
equal and conjugate to PGL,.(IFy) for all A€ A, and (, € E, so that
PGL,(Fy) = SL,(Fy) = G(F,).

4See the proof of Theorem , recalling that A\ has degree 1.
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G H dim G ‘ rank G ‘ Eq ‘ Type ‘ Weyl group
SL, || r?—=1] r—1 2r7ir=3 A4 S,

Sp, || T g2 | HEBL o, | W <6,

TABLE 1. Reminder of certain invariants for the groups considered.

T

Let t =1 be an integer. For every A € A, let Q) < G(F))! be a conjugacy-
invariant subset, such that
€2,
0 = sup ——— < 1.
xea |G(FN)[

Then, for any field Fy of characteristic p and any L > 1,
[{x € X(F,)" : (pr(Frobg, 4))i € Q2 for all X € A}

P(q, (Fx, QA)/\EA) t=

| X (Fg)*
1 1 t
» ogl (. tC (L, (Fa)ren) 7
(1—060)0n L g2
where
(a) Ifd =1, C(L,(Fx)en) « roc=str [IMGH=5E o cond(Fy).
N(N<L

b) Ifd = 1 L [dimG (X, FOM)2
(b) Ifd =1, C(L,(Fa)rer) < d N%§§LM<1}V13>§MGU( ,FRMH2,

with Mg = rank(G)(rank(G) + 1)/2.

(c¢) If the representations (22) arise from a compatible system p : 71(X,7) —
GL,(J [xep On), and X has a compactification where it is the com-
plement of a divisor with normal crossing, then

C (L, (]:)\))\EA) « LdimG+1r(sG:SLr (T + C(X? p)\o)) )

where C(X, py,) only depends on X and py, for an arbitrary fived
)\0 e A.

Remarks 5.15. (1) In the case of curves (d = 1) with F = Q and as-

sumption (i), this is | , Theorem 3.1, Proposition 3.3] (see also
[ , Section 5, Remark 5.4]).
(2) We handle the weaker assumption on projective monodromy

groups to treat L-function attached to even Dirichlet characters over
function fields (Section 7).

(3) The constant C' (L, (Fx)ea) may depend on the characteristic p, but
crucially not on the index [[F, : F,].

(4) The last part of | , Remark 5.2] does not seem quite correct:
one crucially has to control the dependency of C with respect to L
(that is, the Betti numbers) if one wants to take L — 0.

In practice, we will use the following consequence of Theorem

Corollary 5.16. In the setting of Theorem
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(a) If X is a curve, then
tsupycp cond(Fy)! loggq
P Q
(CL (Fas A)AeA) CT- 5a)0n  ql/(tEa)’

where the implied constant is absolute and Eg = dim G + (rank G)/2.
(b) If there are constants By > 0 and By > 1 such that

sup oo (X, FEN) < B1BY for all N > 1, then
AeA

t2(B3droc=st+)t(log(B2) Mg + dim G) loglog g
(1 — 59)5A logq

P(g,(Fr @a)ren) «

with an absolute implied constant.
(¢) If hypothesis of Theorem holds, then

t (rlo=sutO(X, P/\O))t log q
(1 —46a)oa gl/Cdm G+’

P(q, (Fx, Q)\))\EA) «

We prove the theorem and its corollary in the next sections.
5.3. Preliminaries to the proof of Theorem

5.3.1. Irreducibles in tensor powers of faithful representations. A classical
theorem of Burnside asserts that

if G is a finite group with a faithful (complex) representation
p, then any irreducible representation of G appears as a direct
summand of p®M for some integer M > 1

(see e.g. | ; ; ]). The same result holds for compact groups,
and is the key to get bounds on Betti numbers in | |. For classical
groups, this can actually directly be seen from Weyl’s constructions of the
irreducible modules.

A key input to the proof of Theorem is the following modular ver-
sion of Burnside’s result, for classical finite groups in defining characteristic.

Proposition 5.17. Let k be a field of characteristic £ and G = SL,(Fy)
or Sp,,(F¢) with its standard k-representation Std : G — GLy (k). Any
irreducible k-representation of G appears as a composition factor’ of Std®M
for some M < {M¢, Mg = rank(G)(rank(G) + 1)/2. Therefore, for any k-
representation w of G, the semisimplification 7° appears as a direct summand
of (dim ) (Std®M)ss,

Proof. Since G is defined over Fy, any irreducible k-representation of G is
absolutely irreducible, because Fy is the splitting field of G by a 1968 result
of Steinberg | , Section 5.2].

By a 1963 lifting theorem of Steinberg (see | , Section 2.11]), the
absolutely irreducible representations of G in characteristic ¢ are given by
the modules L(A) with A an ¢-restricted highest weight, i.e. 0 < (A\,a¥) < ¢

for all & € A. For w; (1 < i < rank(G)) the fundamental dominant weights,

that means that \ = Ziinlk(c) a;w; with 0 < a; < £.

SWe need to look at composition factors instead of summands, since we consider mod-
ular representations, which are not completely reducible.
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In Bourbaki numbering | , Tables|, w; is A*(Std) (see ibid, VIIL.13.1.1V)
(resp. ker(A*(Std) — A*~2(Std)); see ibid, VIII.13.3.1V) for SL,, (resp. Sp,,).
These are simple quotients or subrepresentations of Std®", so they appear in
the composition series. U

Remark 5.18. For complex representations, combining David Speyer’s proof
of Burnside’s theorem in | | with character bounds | | shows that
M « dim @G is enough, as £ — oo0. Such an improvement (or even M <«
log |F¢|) to Proposition would lead to bounds of the quality of Corollary

in Corollary . However, while Brauer characters control com-
position factors, they do not satisfy (in defining characteristic) good bounds,
to extend this characteristic 0 idea.

5.3.2. Betti numbers of reductions modulo X and semisimplifications.

Lemma 5.19. In the setting of Theorem , if Fx is the sheaf of Fx-
modules on X obtained by reduction of a lisse sheaf of Oy-modules Fy on X,
then

oe(X, FEM) < 0o(X, FEM) < 200(X, FEM)
for any M > 1.

Proof. Let G = ]-'E?M and G, = ]-A}(?M. The lower bound appears in | , P
279|, and the same argument yields the upper bound: we have the universal
coeflicients short exact sequence

0 — H(X,G)) ®o, Fx — HI(X,G)) ®o, Fr = HIM (X, Gy)[A] = 0,
obtained after truncating the long exact sequence in cohomology | ,

page 1.6.5] associated to the short exact sequence 0 — .7%\ iR ]:'A — F,—0
. Taking dimensions, this implies that

7e(X,6)) < 0e(X,G)) < Y (dim HI(X, Gy) + dim HI! (X, 6 )

=0
O
Remark 5.20. If the sheaves Fy in Theorem are obtained by reduction
of sheaves of Oy-modules F,, Lemma shows that it suffices to check

hypothesis in of Corollary for Fy, up to replacing By by 2B;.

To deal with non-completely reducible representations, we observe the
following:
Lemma 5.21. Let F be a sheaf of Fy-modules on X with composition series
O=Fyc--CFn=F, Gi:=F1/F; simple (0<i<n-—1).
Then oo(X, F*) = Y00 0.(X,Gi) = 0.(X, F).
Proof. For all 0 < ¢ < n — 1, we have a short exact sequence 0 — F; —
Fit1 — G; — 0, which gives for all @ > 0 a long exact sequence in cohomology

C— HY(X, Fi) — HY(X, Fier) = HI(X,Gi) — HITH(X,Fi) —
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that yields o.(X, Fit1) = 0c(X, Gi)+0.(X, F;), whence o.(X, F) = 0.(X, Fp,) =
S0 0e(X,Gi) = 0o X, F*). O

5.4. Proof of Theorem . We first give the proof under assumption
, before indicating the changes required in the projective case (assump-
tion (ii)).

For A\, X € A, we will denote by £, ¢ the primes above which they respec-
tively lie. Since A < Spec; ,(O), note that Fy = Fy, Fxr = Fp. We also let

—_

G(Fy) be the set of irreducible (complex) representations of G(Fy).

For every A € A, we consider the lisse sheaf Gy = t on X'. By | ,
Lemma 5.1], the natural map 71 (X%, (7,...,7)) — m (X, 7)! is surjective, so
that the arithmetic and geometric monodromy groups of G, are equal and
conjugate to G(Fy)t.

Exactly as in | , Theorem 3.1, Proposition 3.3, Section 5|, we get
that
-1
|| Alog L
P Q A 1-— _—
(Q7 (“F)\v )\))\EA) <« Z ( ‘G(F)\)‘ 5]\(1 _ (SQ)L’

AEA
N(N<L

where A « 1+ q_1/2é(L, (.F)\))\GA), and O(L, (./T)\))\GA) is defined by

Ig\la/{{ max Z O-C(Xt)fﬂ',ﬂ'/) + Z Z UC(Xt)‘Fﬂ,ﬂ/) )
S weG(Fy)?t AT ‘e ST R
LR i e
0#L
with (see | , Proof of Proposition 5.1|)
]__ P =1 Tt D(r') 4=V
1 = T. 1 O s T. 5 =
e ST O ) er e T T a@D) oAt

identifying lisse sheaves of Q,-modules on X! and continuous representations
71 (X% %) — GLy(Qg). Note that py and (py, py) respectively correspond
to sheaves of Fy- and Z/¢¢'-modules (if £ # ¢').

Hence, we need to show that

C(L, (Fa)ren) < tC(L, (Fa)rer)",

with C defined in the statement of the theorem. Kiinneth’s formula | ,
Exposé 6, 2.4] reduces this to the case ¢ = 1.

5.4.1. Case (a): curves. The first bound on C(L, (Fx)xea) in Theorem ,
when d = 1, is contained in | | (with a power of L smaller by one here,
because we assume that the arithmetic and geometric monodromy groups
coincide).
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5.4.2. Case : compatible systems on wvarieties by reduction to the tame
case. Let Ag € A be fixed and let ¢ : Y — X be the étale covering corre-
sponding to f (mod Ap). Asin | , Proposition 4.7|, by the Hochschild—

Serre sequence,
Uc(Xa ]:7r,71") < O-C(K @*fw,ﬂ/)~

It then suffices to show that the compatible system p is tame when restricted

to Y. Indeed, a result of Deligne | , Corollaire 2.8| shows that the Euler
characteristic of a lisse tame sheaf is equal to its rank times the Euler char-
acteristic of the variety, so by | , 0 — X inequality, p.40], we have in this
case
dim X
oY, " Frr) < 14 |xe(Y, 0" Fra)| + Z Ixc(codim j in Y, p* Fr )|
j=1

< 7+ dim(r) dim(7")C(X, pry),

where C'(X, py,) is a constant depending only on the Euler characteristics x.
of Y and its subvarieties, hence only on X and F),. Therefore, C(L, (Fx)xen)
is

« C(X,px,)-r max max dg Z dr + Z Z d

AEA
F —
NV<L “EG(f) m'eG(Fy) NeA r/eG(F,))
T , N(O\)<L ]
' #1 Y, ' #£1

S 1ydi 1
« CO(X,py,) - rle=s-tip imG+l

where d; := dim 7. Indeed, the number (complex) of irreducible representa-
tions of G(IFy) is given by |G(Fo)f| « |Z(G(Fy))[frankC < pdG=si, grank G (o0

| , Corollary 26.10]), and the maximal dimension of such a representa-
tion is « £ FE (see | , Proposition 5.4]).

To show the tameness of the compatible system restricted to Y, first note
that it is tame at \g, since it factors by construction through the pro-£yo-group
{g€ GL,(O),) : g =1 (mod Ag)}, where ¢y is the prime above which Ag lies.
By purity, it suffices to look at restriction to curves (see | , Section 2.6|,
also | ). In this case, | , page 7.5.1] shows, from a compatibility
result of Deligne, that tameness at one prime implies tameness of the whole
system.

—_

5.4.3. Case (b): varieties through modular representations. Givenm € G(IF)),
n' € G(Fy), we need to bound the sums of Betti numbers o.(X, Fr ). By
| , Corollary 75.4], w (resp. 7') is defined over the ring of integers of a

finite extension Fy/E) (resp. Fy//Ey), say
7w : G(Fy\) - GL,,(OF,), 7' G(Fy) = GLyy (OF,,).
By reduction, we obtain
7: G(Fy) — GL, (k), 7 G(Fy) — GLy (),

for the residue fields k/F), resp. k' /Fy. Let Stdy : G(Fy) — GL,(F)) be
the standard representation by inclusion.
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We start with the case ¢ = ¢/, which is easier. We may then assume
that Fy = Fy. By Lemmas and , along with the fact that p) :
m1(X,7) — G(F)) is surjective,

0e(X, Frar) < 0e(X, Frpr) < 0c(X, 7’ =1 0 py)-

By Proposition , every simple summand of 72° "7 appears as a composition
factor of (Stdy ®F,)®M for some M < {Mg. It follows that

0o X, Frw) < (dimm)(dimr) max oo (X, FPM).  (23)
<tMg

Let us now assume that ¢ # ¢, and note that (py, py) corresponds to
the sheaf of Z/0¢'-modules on X given by A*(Fy X Fy), for A : X —
X x X the diagonal immersion. We may view F 1 as sheaf of (O, ® OF,, )-
modules, and o.(X, Fr /) is equal to the sum of the ranks (under Definition
) of the corresponding étale cohomology groups with compact support.
Then F; 7 is a sheaf of (k® k’)-modules, and by Lemma and the same

argument as in Lemma )

77T7T

oc(X, fmﬂl) < o.(X, ffr,fr’) = O, (X 75,0 A* (]:)\ f)\/)) .

As above, we get that every simple summand in T§S~, appears as a composi-

tion factor of the (k ® k')-module Std®M 15td®M” for some M < (Mg and
M’ < 0'M¢. This implies that

oc(X, Fr ) < (dim7 + dim 7’ )Mrg?j/([ M}E%}zf/[ O (X A*Gus M’)
e e

where Gy = (Fa Q@ k)®M X (Fy ® kO

By purity | , Corollary 8.5.6] and the localization sequence | ,
Proposition 5.6.11], this implies that o (X, A*QMM/) < 0. (X x X, gMM,).
By Kiinneth’s formula | , Exposé 6, 2.4],

rank H (X x X,Gyrar) = Z ranng(X,fg?M) ranka(X,f)(?M/)

a+b=i
< Oc <X,.7:§?M) o (X,}—)(?,M/) ,
hence
0c(X, Fr ) < d(dimm + dim ) S(N)S(N) (24)

where S(A) := maxyr< v Te(X, f-g?M)
Thus, (23) and (24) yield that C(L, (Fx)aea) is, as in Section ,

< max S(A) max Z dp +d 2 Z (dr + dp)S(N)
€
N()\)gL Wefi(lfﬁ) s EIG;é(IlFZ) N()\/)<L7T EG;(:EI‘Z’)
T 1

«  drdc=sir [ MG oy S()\)2.
NI
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5.4.4. Projective monodromy groups. Let us now suppose that only assump-
tion holds. For n : G — PG the projection, we have

xze X(F,)t: Frob,. ,))i € n(€2y) for all A e A
(i 2 < 1 X B (b, ) () ]

| X (Fg)l*
and for any Q < G(F)),
)] _ [n@IZGED] 1] 5
|PG(F,)| |G(Fy)| T G(FY)] '

Thus, it is enough to repeat the arguments above with G replaced by PG.
Indeed, since (r,|Fy| — 1) = r for all A € A, we have SL,(F)) =~ PGL,(F)),
so this can be done mutatis mutandis (in particular, the “standard represen-

tation” PG(F,) — GL.(Fy) on page 3! is well-defined). O
6. GENERIC MAXIMALITY OF SPLITTING FIELDS AND LINEAR
INDEPENDENCE
This section mostly recalls some results from | | and gives their

analogues for SL. when necessary.
6.1. Generic maximality of splitting fields.

DEFINITION 6.1. For R a ring and r > 2 an integer, we let
Psr, (R) := {P € R[T] monic:deg(P)=r, P(0)=1} (r=>=2),
Psp, (R) = {PePsy,(R): P(T)=T"P(1/T)} (r =2 even).

Note that for G € {SL,,Sp, }, the set of (reversed) characteristic polyno-
mials of elements of G(R) is included in Pg(R), with equality at least when
R is a finite field (see the reference to Chavdarov’s proof in | , Lemma
B.5(2)]).

Let E be a Galois number field with ring of integers O. Note that the
Galois group of a polynomial P € Pg(FE) of degree n is contained in

- 6, if G =SL,.
— W, < &, (the Coxeter group B, ;) if G = Sp, (r even).
We will say that the Galois group is non-mazimal if this inclusion is strict.

6.1.1. Detecting non-maximal Galois groups.

Proposition 6.2. Let G = SL, (r = 2) or G = Sp, (r > 2 even). For
every t = 1 and X € Specy (O), there exist conjugacy-invariant sets ; \ gt C
G(F\) (i e I, with I an index set of size 4t) such that:

- Qi,A,Gt has density < 6, 1= ((1 — %) (1 + %))t (1 — 2%)

~Ifg = (g91,---,91) € Pa(O\)! is such that [[i_,det(1 — Tg;) €
Pa(Ox) < OA\[T] has non-mazimal Galois group, that is, strictly
contained in &L (resp. W) if G = SL, (resp. Sp,.), then there erists
i € I such that g (mod \) € ; 5 .

Proof. The case G = Sp, is contained in | , Proof of Theorem 4.3|
(see also | , Proof of Theorem 8.13]), using | , Lemma B.5| to
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switch between densities of matrices and characteristic polynomials, and up
to replacing Z by O,.

The case G = SL, is simpler, and we also apply the lemma of Bauer
quoted by Gallagher | , p. 98]: if H < &, is transitive, contains a
transposition and a m-cycle with m > r/2 prime, then H = &,.. We define

Qo = {PePs,(Fy) :product of linear factors}®,
Dy = {PePs,(Fy): P reducible},
ox = {PePsL(F)): P =0QQ1 . Qu: o) 28 domionn) oda)
Qya = {PePsi(Fa): P has “Fsibie 10er > r/2)°,
Oy = {geSL.(Fy):det(1—Tg) e} (0<j<3),
Qinet = U xUax Q) i= (k) el :={1,... 1} x{1,2,3},
(we make the reader attentive to the fact that some of the sets above are

defined using complements) and the same arguments as in the Sp, case give
the conclusion.. O

6.1.2. Application of the large sieve.

Corollary 6.3. Let X, E, O and A be as in Theorem . For every A € O,
let Fy be a rank r lisse sheaf of free Oy-modules on X, corresponding to a
representation py : 71(X,n) — GL.(O,). We assume assumption (i) or

of Theorem , and hypothesis (a), or of Corollary , hold for
px. For x e X(F,), let

~+

Pa(m) := [ [ Pa(2i), Pa(ws) = det(1 — Tpx(Froby,q)).
=1

Then, for every t =1 and every finite field F, of characteristic p, we have

{z € X(F,)": P\(x) € O\[T] heshon-maximal /) ¢ A}

XET (25)
t? “Paea Cond(]:’\)tqll/(()t% under
& m t(B%drdG:SLr )t(log(Bi)MG + dim G)% under
, (re=ste1O(X, pao))” rerdsaesmy under

with an absolute tmplied constant.

Proof. By Proposition 6.2, the density on the left-hand side is

< Z |{$ € X(Fq)t : (PA(FI"Obxi,q))lgist € Qi,)\,Gt YA€ A}|
N X (Fy)[* ’

1el
and it suffices to apply Corollary to each summand. U
6.2. Girstmair’s method. Below, we recall the following forms of Girst-

mair’s results | ; |, as exposed in | | (with some changes in
the symmetric case).
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DEFINITION 6.4. For a set M of complex numbers, let

Relp(M) = {(na)eZM: [[ o™ =1
aeM

Proposition 6.5. Let E be a number field, t = 1 an integer, and for 1 <
i < t, let P, € E[X] be a polynomial with splitting field K;, set of roots
M; c K;, and Galois group G; := Gal(K;/E). We assume that the fields
K; are linearly disjoint, and we let M = Ule M;, K = K;---K;. Then
Rel,,(M) ® Q = ®'_, Rel,,(M;) ® Q. Moreover:

(1) (W case) Assume that G; = W, for some r > 4 even, acting by
permutation on M;. If |a| =1 for every a € M;, then

Rel,,(M;) ® Q = {(na) eQMi.p, = na} )

(2) (& case) Assume that G; = &, for somer = 2, acting by permutation
on M;. Then Rely,(M;) ® Q is either:
(a) ifr=2: 0, Q1, or Q(-1,1).
(b) ifr=3: 0 or Q1.

Proof. The W case is | , Proposition 2.4, (2.5)]. However, Q in the
paragraph after the second display of | , p. 13] should probably be
replaced by E, and the contradiction comes from the fact that the splitting
field of K/E would be a 2-group.

For the & case, note that the permutation representation F(M;) of &,
decomposes as the sum of two irreducible representations

F(M;) = Q1P G(M;), where G(M;) = { ne) € QMi . Z N = O}

aeM;

If G(M;) is contained in the subrepresentation Rel,,(M;) ® Q of F(M;),
then there exists m > 1 such that (aj/a1)™ = 1for 1 < j < r, if M; =
{a1,...,a;}, so that o™ = Ny /p(a1)™ € E. Hence, K;/E is a Kummer
extension and Gal(K;/E) is abelian, which implies that r = |M;| = 2. If
r = 2, note that Rel,,(M;) ® Q = Q2 would imply that Rel,,(M;) = Z2, a

contradiction. O

6.3. Conclusion.

Corollary 6.6. Under the hypotheses of Corollary , assume moreover
that (Fx)aea forms a compatible system, i.e. that for allz € X (Fy), Py\(x) =
P(z) € E[T] does not depend on . For every & € X(Fy)" and 1 <i <t, let
M (z;) < C be the set of zeros of det(1 — T'px(Frobg, 4)), so that the set of
zeros of P\(x) is ngl M (z;). Then, for all but at most a proportion (25)
of x € X(F,)*, we have

®!_,Z1 : G =8L, (r
®!_1{(na) € ZM @) g = ng} G =Sp, (r

)

2
4 even).

Rel,,(M(x)) = {

=
=
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In other words, the only multiplicative relations among the roots are the
trivial ones. If we write the roots of P(x;) as

e(0j(xz;)) (1<j<r) : G =SL,
then the angles
1, Oj(x;) (1<i<t 1<j<r—1) :G=5L,
1, 05(z;) (1<i<t, 1<j<r/2) :G=S5p,

are Q-linearly independent for all but at most a proportion (25) of x €
X (F,)t.

Proof. By the compatibility assumption and Corollary 6.3, Py(x) has max-
imal Galois group &% or W/ for all but at most a proportion (25) elements
x € X(F,)". Let us assume this maximality condition holds, in which case
the hypotheses of Proposition hold. Since the product of the zeros of
Py(z;) is equal to 1, we have Z1 < Rel,,(M(x;)) for all z; € X(F,). By
Proposition 6.5 and the fact that Rel,, (M (z;)) is a lattice, this implies that
Rel,, (M (x)) is as given in the statement. O

7. PROOF OF THE GENERIC LINEAR INDEPENDENCE THEOREMS

In this section, we finally prove Theorems 1.1, and , by applying
Corollary 6.6. That basically means checking that assumptions (i) or of
Theorem (on monodromy groups) apply, as well as hypothesis or

of Corollary

7.1. Proof of Theorem (exponential sums). Assumption (i) of The-
orem holds by Theorems and for Kloosterman sums and Birch
sums respectively, with the set of valuations A, ,, A, given therein. For
Kloosterman sums, the dependency with respect to p can be removed by
Remark

Since the sheaves are on curves, of Corollary holds. By | ,
Theorem 4.1.1(3, 4)|, cond(Kl, ») is bounded by a constant depending only
on r (and not on p), and the same holds true for Birch sheaves by the bounds
on Swan conductors and ramification points in | , Chapter 7. O

7.2. Proof of Theorem (super-even primitive characters). As-
sumption (i) of Theorem applies by Theorem , with the set of val-
uations Ay, given by the latter.

Ifp > k, we see (asin | , Lemma 5.2|) that Wy, oqq = H1<a<2,‘<,a odd W1
is the space of odd polynomials of degree < 2x — 1 and Primg,; oqq the sub-
space of those polynomials with degree exactly 2k — 1. One can then apply
Corollary , which gives the theorem.

To obtain the weaker error (but with explicit base of t) in Remark ,
one applies Corollary instead, using the bounds for Betti numbers in
[ , Lemma 5.2|, giving By = 3(2x + 1)2%, By = 2k + 1 O



Roots of L-functions over function fields 37

7.3. Proof of Theorem (even primitive characters). In this case,
hypothesis of Theorem (projective monodromy groups) applies by
Theorem

If p>m, thenasin | |, we see that Wy, = [ [, ,<,, W1 is the space of

polynomials of degree < m with constant term 1 and Prim,, is the subspace
of those polynomials with degree exactly m. One can then apply Corollary
, which gives the theorem.

To obtain the weaker error (but with explicit base of ¢) in Remark )
one applies Corollary instead, proceeding from | | asin | ,
Lemma 5.2] to bound the Betti numbers. Let us indeed show that Hypothesis

of Corollary holds with By = 3(m + 1)™*! and By = m + 1. Let
M > 1 be an integer. With coordinates (t1,...,ty, f) on AM x Prim,y,,
H (Primyn, £ ) = HEM (AN Priman, L 0)4-+0007) -

univ

Note that AM x Prim,, is defined in AM*1+™ (an additional coordinate is
needed for the condition that a,, # 0) and f(t1)+---+ f(tar) is a polynomial
in t;,a; of degree m + 1. By | , Theorem 12| (with (6, N,r,d,s,e;) =
(m+1,M +1+m,1,2,0,0)), we have

Oc (Primm, E%K{) < 3 (14 max(m + 1, 3))M+m+1 —3(m+ 1)M+m+1 ‘
O
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