Gaussian distribution of short sums of trace functions over
finite fields

Corentin Perret-Gentil

ABsTRACT. We show that under certain general conditions, short sums
of /-adic trace functions over finite fields follow a normal distribution
asymptotically when the origin varies, generalizing results of Erdd&s-
Davenport, Mak-Zaharescu and Lamzouri. In particular, this applies
to exponential sums arising from Fourier transforms such as Klooster-
man sums or Birch sums, as we can deduce from the works of Katz.
By approximating the moments of traces of random matrices in mon-
odromy groups, a quantitative version can be given as in Lamzouri’s
article, exhibiting a different phenomenon than the averaging from the
central limit theorem.
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1. INTRODUCTION

Let [F, denote the finite field of cardinality ¢ in characteristic p. For a
function ¢t : F; — C and a subset I < F,, we let

S(t, 1) = tx)

zel

be the partial sum over I. For I of various structures and sizes, such sums are
omnipresent in analytic number theory (see e.g. | , Chapter 12]). Due
to oscillations, they often exhibit cancellation, and as a general phenomenon
we can expect (or wish for) square-root cancellation |S(t,I)| < +/|I|.
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2 Gaussian distribution of short sums of trace functions

1.1. Sums over subsets with varying origin. For z € F;, we denote by
I +x ={y+x:ye I} the translate of I by x. Given a family of functions
(tg : Fq — C),4 and intervals I, < F,, we are interested in the distribution of
the complex random variable

S(tq, Iy + x)
< m >z€Fq, (1>

with respect to the uniform measure on Fy, as ¢, || — .

Fzample 1.1. When ¢ = p, the finite field F, can be identified with the
discrete interval [1...p]. For an interval Iy = [1...H] < [1...p] and
1 < x < p an integer, S(t, [y + x) is the partial sum

S(t,a, H):= >, ty)
r<y<z+H
of length H starting at = + 1. More generally, when ¢ = p, we can consider

“boxes” in F, = IF;.

1.2. The case of Dirichlet characters. In the situation of Example
with (¢,)p = (xp)p a family of Dirichlet characters, the question of the dis-
tribution of the random variable (1) appears in the literature as follows:

(1) When y,, is the Legendre symbol, Davenport and Erdds | | showed
that the real-valued random variable

(S(Xp7 €, Hp)/\/ﬁp)xeﬁfp

converges in law to a normal distribution with mean 0 and unit variance

when

p, Hp — oo with log H, = o(logp). (2)

(2) Mak and Zaharescu | | generalized this result to short sums of the
form

Sp(xaHp) = Z Xp(9(P)Yp(f(P)),

P:(Il,IQ)EC
r<ey<x+Hp
xoel

where C' is an absolutely irreducible affine plane curve over F,, g, f €
F,(x,y) are rational functions, 1, (resp. X,) is an additive (resp. non-
real multiplicative) character modulo p, and I is an interval. Under
some technical conditions, they similarly obtain that the projection of
the random variable (S, (x, H,,)/ \/Hp)zer, on any line through the origin
converges in law to a normal distribution with mean 0 and unit variance
when p, H, — oo under (2).

(3) Lamzouri | | showed that when X, is a non-real Dirichlet character,
the random variable

(S(X;n z, Hp)/\/ﬁp)xe]}?p

converges in law to a normal distribution in C with mean 0 and covari-
ance matrix 3 (9) when p, H, — o with (2).
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All of the above proceed by using the method of moments. To do so, one
needs bounds on character sums that follow from the work of Weil on the
Riemann hypothesis for curves over finite fields.

A particular aspect of Lamzouri’s method in | | is to consider a
probabilistic model, where the values of a multiplicative character are modeled
as independent random variables uniformly distributed on the unit circle in
C. This model is shown to be accurate (in the sense of convergence in law)
by bounding an exponential sum.

1.3. Generalization to trace functions. In this article, we will consider
the question introduced above for families (t, : F; — C)q of ¢(-adic trace
functions over Fy, as they appear in particular in the works of Katz (see for
example | | and | |), and more recently in the series of papers by
Fouvry, Kowalski, Michel and others (see | I, | , Section 6] or
| | for surveys).

Using the results reviewed in | |, building upon Deligne’s gener-
alization of the Riemann Hypothesis over finite fields | | and the works
of Katz, we will show that under general assumptions on a family of ¢-adic
trace functions (¢, : F;, — C),, and a family of sets I, < F,, the ran-
dom variable (1) converges in law to a normal distribution in C = R? when
q, Hy = |I;] — oo in the range (2). Hence, we generalize the results of
Section to trace functions.

For example, for the (normalized) Kloosterman sums of rank n > 2
tg(z) = Klng(z)
(—1)n-t tr(zy 4+ - + )
P Z € (3)

N p
T1,...,2n€Fg
Iy Tp=1T

(where tr : F, — F), is the trace), we get the following:

Theorem. Letn > 2 and for every prime power q, let I, < IF,. The complex

random variable
(saqn,q, I, + a:))
V |Iq’ Z‘E]Fq

(with respect to the uniform measure on F,) converges in law to a normal
distribution N in C = R?, with mean 0 and covariance matriz (§9) if n is
even and % (§9) if n is odd, when q, |I,| — o0 with log |I,| = o(log q).

More precisely, for any € € (0,1/2) and for any closed rectangle A < C
with sides parallel to the coordinate azes and Lebesque measure p(A), the
probability

P (S““nvq’fq i A> o e By S(Klug, I, + )1, € A}

vV |Iq’ q
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s given by
log |L,)\*° 1
PWNed) +0. [ uA)|qgate+ (Og‘Q|> +
logg v
when q, |Iq] — o0 under the range log || = o(logq) if n is even and |I,| =

((log q)20+e) e ) otherwise. Asn — o0 or if n is even, the exponents 2/5 and

3/2 can be replaced by 1/2 and 1, respectively.

The general results will be stated in Section

1.3.1. Ezamples. Examples of (-adic trace functions over F, we will consider
include:

(a) Dirichlet characters x modulo ¢ or compositions x o f, where f €
[Fy(T) is a rational function. This is the case considered in | |

(if f=1id) and | |, when ¢ = p.
(b) Hyper-Kloosterman sums Kl, ;, of rank n > 2, or more generally
hypergeometric sums, as studied by Katz in | | and | |.

(c) General exponential sums of the form

oo Loy, (tr@f(y) +h(y)
w0 =7 % ( : )x<g<y>>, (1)

for f,g,h € Q(X) rational functions and x : Fy' — C a multiplicative
character. This includes Birch sums

tfe) = Bifr.g) = 2= e (m“y)), 5)

yeF

considered by Birch, Livné and Katz, and sums of the form

1, (i)
) == 3, (p ) (©)

yelF,

studied by Katz and Fouvry-Michel (see e.g. | D).
(d) Functions counting points on families of curves over F, parametrized
by varieties over g, as surveyed in | , Chapter 10].

Note that ¢, can be complex or real-valued (the latter occurring for ex-
ample for hyper-Kloosterman sums of even rank and Birch sums).

Acknowledgements. The author would like to thank his supervisor Em-
manuel Kowalski for guidance and advice during this project. It is a pleasure
to acknowledge in particular the influence of the works of Etienne Fouvry,
Nicholas Katz, Emmanuel Kowalski, Youness Lamzouri and Philippe Michel.
The computations present in this document have been performed with the
SageMath | | software. This work was partially supported by DFG-SNF
lead agency program grant 200021L _153647. The results also appear in the
author’s PhD thesis | .
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2. STATEMENT OF THE RESULTS

2.1. Trace functions over finite fields. We briefly recall some definitions
and terminology around f-adic trace function over finite fields necessary to
state our results, and refer the reader to | I, [ , Chapter 7], | ,
Section 6], | I, | or | | for details and further references.

DEFINITION 2.1. Let ¢ be a prime number distinct from the characteristic p
of the finite field F,. We call ¢-adic sheaf over F, a constructible sheaf F of
Qg-modules on P!/F, (with respect to the étale topology) which is middle-
extension, i.e. for every nonempty open j : U — P! on which F is lisse,
we have F =~ j,j*F. We write Sing(F) = PY(F,) — Ux(F,) for the set of
singularities of F, where Uz is the maximal open set of lissity  of F.

There is an alternative point of view through f-adic representations of
étale fundamental groups that can be very convenient in practice:

Proposition 2.2. There is an equivalence of categories between £-adic sheaves
F over Fy and continuous finite-dimensional £-adic representations

pr i g i= Gal (Fg(T)*P/Fy(T)) — GL(F5) = GLn(Qy).

Moreover, F is lisse at v € PX(F,) if and only if the inertia group I, < m 4
acts trivially on @Z. The integer n is the rank of F.

DEFINITION 2.3. Let ¢ : Q, — C be a fixed isomorphism of fields. The
trace function associated to an f-adic sheaf F over F, corresponding to a
representation pr : m 4 — GL(V) is the function

t]: : Fq - C
T — utr (p]:(FTObx,q) | le) )

where Frob, , € (D,/I;)* = Gal(F,/F,)* is the geometric Frobenius at = €
F,, for D, < m 4 the decomposition group at .

DEFINITION 2.4. An /-adic sheaf F over F is pointwise pure of weight 0 if
for every finite extension Fy/F, and every x € Ur(Fy), the eigenvalues of
pr(Frob, ) are Weil numbers of weight 0, i.e. their images through any
isomorphism of fields ¢ : Q, — C have unit absolute value.

By a result of Deligne | , 1.8], we have |[tr||n < rank(F) if F is
pointwise pure of weight 0 (this is clear at points of lissity), so the former
definition corresponds to a normalization assumption for the trace function.

By the Grothendieck-Lefschetz trace formula, the Euler-Poincaré formula
of Grothendieck-Ogg-Safarevich and Deligne’s generalization of the Riemann
hypothesis over finite fields to weights of ¢-adic sheaves | |, we have a
precise control on sums of trace functions:

1One shows that such an open exists — it is where the stalk has generic rank — and that
F is determined by its restriction to Ur, see e.g. | , 8.5.1].
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Theorem 2.5. For F an (-adic sheaf over Fy that is pointwise pure of weight
0, we have

Z t]:(x) =q- tr <Fr0bq |fﬂ_§;,e;>m) —+ [0) (E(F)\/a) ,
zelFq

where

| 75— Gal (Fy(T)PFy(T)) — m1q —> Gal(F,/Fy) — 1

is ezact, Frob, € Gal(F,/F,) is the geometric Frobenius, Fpeeom is the space
»q

of coinvariants of the representation pr of W%:a; " and
E(F) = rank(F) | [Sing(F)| -1+ | Swan,(F)|. (7)
zeSing(F)
Proof. See | , Exposé 6], | , Chapter 4], | , Chapter 2| or
| , Section 9]. O

Remark 2.6. In the works of Fouvry-Kowalski-Michel and others, the error
term is usually only given in terms of the conductor

cond(F) = rank(F) + | Sing(F)| + Z Swang (F),
z€Sing(F)

which is independent from ¢ in most “natural” families of sheaves. We are
more precise in (7) to be able to discuss cases where the conductor will be
growing.

DEFINITION 2.7. An (-adic sheaf over Fy is irreducible (resp. geometrically
irreducible) if the corresponding representation of w4 (vesp. of m¥7™) is
irreducible.

Finally, we recall the definition of monodromy groups.

DEFINITION 2.8. For a fixed isomorphism of fields ¢ : Q, — C, the geometric
(resp. arithmetic) monodromy group of an f-adic sheaf F over F, with rank
n is the algebraic group

Ggeom(]:) = L/O]:(Trieqom) < Garith(F) = Lp]:(ﬂ'l,q) < GLn(C)a

where = denotes Zariski closure.

Remark 2.9. The main term in Theorem can be rewritten as g tr(Frob, |
FGyeom(F))s Which is ¢ dim(F¢) if Ggeom(F) = Garitn (F)-

2.2. Coherent families. Finally, we introduce the class of families of trace
functions to which our results will apply.

DEFINITION 2.10. Let us fix a prime ¢ and an isomorphism of fields ¢ : Q, —
C. A family (F;), of pointwise pure of weight 0 and geometrically irreducible
(-adic sheaves over I, (for ¢ varying over powers of primes distinct from ¢)
is said to be coherent if:
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(1) (Conductor) cond(F;) is bounded independently from g,
and either:

(2) Kummer case: For every q, Fq is a Kummer sheaf £, .y, for a char-
acter xq : Fy' — C* and f, € Fy(X), and the characters x, are either
all real-valued or all complex-valued.

(3) Classical case: There exists G € {SLy,11(C), Spy,(C),SO,+1(C)} —
{SOg(C)} for some n > 1 such that for every sheaf F, over Fy in the
family:

(a) (Monodromy groups) The geometric and arithmetic monodromy
groups of F;, coincide and are conjugate to G in GL,(C).
(b) (Independence of shifts) There is no geometric isomorphism

[+a]*F, = F,®@L or [+a]*F,= D(F,)®L 8)

for a sheaf £ of rank 1 over Fy and a € G,,(F,), where D(F,)
denotes the dual sheaf (corresponding to the dual representa-
tion).

DEFINITION 2.11. For F an f-adic sheaf over F, and I < F,, we say that F is
I-compatible if, in the case where F is a Kummer sheaf £,y with deg(f) >
1, we have that »", z; # 0 for all 1 < m < deg(f) and z1,..., 2y € I. If
F is not a Kummer sheaf, it is always I-compatible.

Ezample 2.12. A Kummer sheaf L, (s is I-compatible if we have
I'c[l...p/deg(f)) c Fy =T,

Remarks 2.13. As we shall see, these conditions are fairly generic for natural
families arising in number theory. For example, geometric irreducibility and
uniform boundedness of conductors are stable by ¢-adic Fourier transform.
In the classical case, the equality of monodromy groups is to control a main
term through monodromy (see Remark 2.9), while the other conditions are
to show that the monodromy group of a sheaf obtained as a sum of translates
of the F; is as large as possible, through the Goursat-Kolchin-Ribet criterion
of Katz.

2.3. Qualitative version.

Theorem 2.14. Let (t, : F; — C)4 be a coherent family of trace functions
and let (I4)q be a family of subsets I, < Fy such that Fy is I;-compatible.
Then the complex random variable

(S(tq, I, + l‘))
m €l

(with respect to the uniform measure on Fy) converges in law to a normal
distribution N in C = R?, with mean 0 and covariance matrix

1 0)\ . 1/1 0 .
<0 0) if ty has real values, 2<0 1) otherwise 9)

when q, |14 — oo with log |1,| = o(logq).
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(c) H = 1000

FIGURE 1. Distribution of sums of trace functions for a
Dirichlet character modulo p = 7927 of order p — 1.

Remarks 2.15. (1) We do not require that I, be an interval, but it can
rather be any (small) subset.
(2) The result shows in particular that the limit has independent real
and imaginary parts.
(3) As we shall see, the condition on ¢, being real-valued can be refor-
mulated as a condition on the monodromy group of the family.

To prove this theorem, we extend and adapt the method of | |. The
values of the trace functions are modeled by random variables distributed
like traces of random matrices uniform in maximal compact subgroups of
the monodromy group with respect to the Haar measure (as in Deligne’s
equidistribution theorem), and the short sums by random walks.

The ¢-adic formalism and Deligne’s analogue of the Riemann hypothesis
over finite fields applied to sum of products are used to show that this model
is accurate, through the method of moments.

The conclusion then follows from the central limit theorem.

We mention that similar ideas are also used in | | to study the paths
obtained by joining partial Kloosterman and Birch sums, as stochastic pro-
cesses.

2.4. Quantitative version. Actually, Lamzouri used more precise informa-
tion than the central limit theorem: the first moments of the model corre-
spond to those of a Gaussian, and are more generally bounded by them. This
allows him to approximate the characteristic function of (S(xp,z, Hp))xer
asymptotically, and in turn, gives a bound on the error term for the joint
distribution function (what we will call a quantitative version of the conver-
gence in law result) by using an identity of Selberg.

We also get a quantitative version for trace functions by using the fact
that moments” of traces of random matrices in classical groups are also
Gaussian (in C = R?) as the rank grows, as already remarked and exploited

2For a complex-valued random variable X, we consider here the moments E(X*X")
(and not E((Re X)*(Im X))); see Remark below.
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(A) H =100 (B) H = 1300

FiGURrE 2. Distribution of sums of trace functions for the
(real-valued) Kloosterman sum Kly modulo p = 7927. In
bold, the density function of a standard normal random vari-

able.
for example by Diaconis-Shahshahani | |, Pastur-Vasilchuk | |, as
well as Larsen | | in the context of trace functions.

More precisely, one rather needs subgaussian bounds on high order mo-
ments with respect to the rank, but exploiting the fact that they become
exactly Gaussian allows to improve the error terms as the rank grows.

Hence, this uses a different phenomenon than the averaging of the central
limit theorem: the random variables modeling the values of the trace func-
tion are themselves “close to Gaussian”.

The following is then the extension of the main theorem of | | (rather
than Theorem ):

Theorem 2.16. In the notations and hypotheses of Theorem , fite e
(0,1/2) and let R be the rank of the monodromy group of the family. For
any closed rectangle A c C =~ R? with sides parallel to the coordinate azes
and Lebesgue measure p(A), the probability

S(ty, I+ x) |{mqu:S(tq,Iq+x)/MEA}|
Pl ———=—~cA]| =
( VI ) q

18 given by

_%-i-a 10g|Iq| ’ !
PN € A) + O. <M(A) (q + < log q > " |Iq|>>

when q, |1;| — © with

log |1,| = o(log q) real-valued and Kummer cases
2R
|| =0 ((log q)W) otherwise,
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where N is a normal random variable in C with mean 0 and covariance
matriz as in Theorem , and

R-1

2R—1

5 1/2 — e real-valued and Kummer cases
otherwise.

Remark 2.17. By using a generalization of the Berry-Esseen inequality from
| |, we improve the method of Lamzouri, which is necessary in the non-
real-valued case (see the outline at the beginning of Section 5). Moreover:

(1) In the self-dual case, Theorem recovers the bound and the range
of | |, with an improvement on the power of |I;| (from 1/4 to
1/2), thanks to a modification of the method.

(2) In the non-self-dual case, we recover the bound valid for Dirichlet
characters when the rank R — o0, but under the weaker range |I,| =

0 ((log q)%) than the one for which Theorem is valid. We will
explain the reason for this later on.

2.5. Examples. In Section 7, we will prove that natural families arising
from the examples of Section are coherent, so that Theorems and
apply to them.

To make the arithmetic and geometric monodromy groups coincide, we
may eventually need to replace a family (F;)q by the twisted family (a; ®
Fq)q for a, € Q; a Weil number of weight 0. This has simply the effect of
multiplying the trace function by oy, and the covariance matrix of Theorem

by the orthonormal matrix

Reay, —Imay
Imay, Reoq )’

where we identify o, with its image through the fixed isomorphism ¢ : Q, —

C.

2.6. Moments of random matrices in classical groups. As we men-
tioned, an important ingredient in the proof of Theorem is the following:

Proposition 2.18. For n > 1, let G be SL,,+1(C), Spy,(C) or SO,4+1(C)
with standard representation Std. Then, for R = rank(G) (namely n, n and
|(n +1)/2] respectively):

(1) If Std is self-dual (i.e. in the symplectic case),

mult; (Std®*) = 0 (k=0 odd), (10)
multy (Std®%) = (k — 1)!! (0 <k <R, even), (11)
mult; (Std®%) < (k — 1)!! (k= 1). (12)

(2) Otherwise,
mult; (Std®* @D(Std®*)) = k! 0<k
mult; (Std®* @D(Std®")) = 0 (0<k#r<R), (14)
mult; (Std®* @D(Std®")) < VE!r! (k,r >
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where multy(-) denotes the multiplicity of the trivial representation in a
representation of G.

New aspects compared to existing works are the bounds (12) and (1)
that we need on the large order moments with respect to the rank.

Remark 2.19. Recall that (see Section 5.3):

— For k,r > 0 distinct integers, the (k,r)-th moment of a standard
Gaussian in R? = C is zero.
— For k odd, the kth moment of a standard Gaussian in R is zero.

In the self-dual case, odd moments are zero even for high rank, but in the non-
self-dual case, we will see that there are infinitely many nonzero nondiagonal
terms. This is the reason for the restricted range in the non-self-dual case of
Theorem noted in Remark

3. PROBABILISTIC MODEL

We start by setting up a probabilistic model for the random variable
(S(tg, I4+7))zer, , motivated by Deligne’s equidistribution theorem and Lam-
zouri’s work | | for Dirichlet characters. We then compute its moments.

3.1. Deligne’s equidistribution theorem. Theorem 2.5 and Weyl’s equidis-
tribution criterion lead to the following, which shows that there is always an
equidistribution result in a coherent family.

Theorem 3.1 (Deligne). Let us fix an isomorphism ¢ : Q, — C, and let
(Fq)q be a coherent family of £-adic sheaves over Fy with monodromy group
G < GL,(C). Let K < G(C) be a mazimal compact subgroup.

For every x € Ur,(Fy), the semisimple part of the Jordan-Chevalley decom-
position of tpr,(Frob, ) in G gives a well-defined conjugacy class 0 4 € Kt
such that tr,(x) = tr(0zq).

When q — oo, the set {04 : x € Ur(F,)} becomes equidistributed in K*
with respect to the pushforward of the normalized Haar measure of K.

Proof. This is a variant of | , Chapter 3| and | , Chapter 9. O

3.2. Probabilistic model. Theorem 3.1 suggests to model the random vari-
able

(p].-q (Frobw,q)>

(with respect to the uniform measure on F;) as ¥ = 7(X), where X is a
random variable uniformly distributed in a maximal compact subgroup K
of G with respect to the normalized Haar measure and 7 : K — K¥ is the
projection to the conjugacy classes.

We shall then accordingly model the random variable

(t;q (x))mqu by Z = tr(Y).

er]:q (Fq ) 5

Remark 3.2. In | |, the values of Dirichlet characters of order d are
modeled by random variables uniformly distributed in the unit circle, while
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in our model, by uniform random variables in the roots of unity of order d
(the monodromy group of a Kummer sheaf associated to a Dirichlet character
of order d) are used. Since the moments are the same (see Remark 5.5), this
will make no difference.

3.2.1. Sums of shifts. Similarly, for I < I, of size H > 1, we will model the

random vector
( (t]:q (.’E + a))ael >w€Fq

by (Z1,...,Zm), for Z; independent distributed like Z.

Therefore, the sum of shifts

(S(t]:q, I+ :C))

€l

= (Z tr,(y + $)>
yel

will be modeled by the random walk S(H) = Z; +--- + Zpy, as in | ].

zelFy

3.3. Computation of the moments.

Proposition 3.3 (Probabilistic moments). For all integers k,r = 0 and
H > 1, the moment

Mprob(k7r; H) = E(S(H)kS(H)T)
1s equal to

D) (k}{. ) )

ki+-+kg=kr1+-+rg=r
k; =0 ;=0

x [ [ty (Std®* @D(Std®™)),
i=1
where Std is the standard representation of G < GL,(C) and D(Std) its
dual.

Proof. By independence and the multinomial formula, Mo (k, 7; H) equals

Z Z </€1 . k k:H> < TH) HE Zk Z”)

ki+-+kg=kri+--+rg=r
k; =0 r; =0

=

By the Peter-Weyl Theorem,

BZZ) = | a T @ - | o) 5

Kt
= mult;(Std®* ®D(Std®")),

where p is the normalized Haar measure on K, since tr (resp. tr) is the
character associated to the standard representation of G (resp. its dual). O

Remark 3.4. The covariance matrix (9) of Theorem is given with respect
to the standard basis 1,7 of C as R-vector space, and a nice feature of the
result is that the matrix is diagonal, i.e. the real and imaginary parts are
independent. However, it will be more natural for the proof to make the
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linear transformation (%) = (1 %) (ReZ) and consider as in Proposition

the moments E(Z¥Z7) instead of E((Re Z)*(Im Z)"). The reason is that
conjugation has the algebraic interpretation of dualization of representations,
characters, and trace functions. In the real-valued case, there is no difference.

Lemma 3.5. We have E(Z) = 0 and the covariance matriz of the random
vector Z = (Re Z,Im Z) is

1 0). ‘ 1/1 0 .
<0 0) if Std is self-dual, 3 <O 1> otherwise.

Proof. Since the sheaf is geometrically irreducible, Std is irreducible, so that
E(Z) = mult;(Std) = 0 by Schur’s Lemma. Moreover, for every integer
r = 0 we have

mult (Std®") = f

tr(g)"du(g) = f t2(9) du(g) = multy (D(Std)®")
K

K

where the second equality follows from the fact that mult;(Std®") is an
integer. Using this, we find that the covariance matrix of Z is

1 /multy (Std®?) + 1 0

2 0 1 — mult;(Std®?) )
Finally, again by Schur’s Lemma, mult (Std®?) = mult; (Std ®D(D(Std))) =
0Std self-dual- O

Lemma 3.6. Let F be a geometrically irreducible £-adic sheaf over Fy, point-
wise pure of weight 0, with monodromy groups G = Ggeom (F) = Garith (F) <
GL,,(C). The following are equivalent:
(1) For any finite extension Fy /Fy, the trace function t : Fy — C is
real-valued.
(2) The standard representation of G < GL,,(C) is self-dual.
(8) mult; (Std®?) = mult; (Std ®D(Std)) = 1.

Proof. By a result of Deligne | , 1.3.9] (see | , 9.0.12]), we have G°
semisimple, so that there is an equivalence of categories between represen-
tations of the algebraic group G, of the Lie group G(C), or of K. Note
that by assumption, Std is irreducible. By the Chebotarev density theorem,
the Frobenius conjugacy classes Frob, ., for Fy/F, a finite extension and
xz € Ur(Fy), are dense in 7y 4 (see | , 1.2.2, Corollary 2 a)]). Thus,

is indeed equivalent to having ¢(tr(pr(m14))) < R for all ¢, which in turn
holds if and only if tr(G) < R. Hence, is equivalent to by character
theory of G(C). If (2) holds, then

multy (Std®?) = mult, (Std ®D(Std)) = 1
by Schur’s Lemma, so that holds. If holds, we have

1= L{ tr(g)*dg = JK tr(g)zdg‘ < L{ | tr(g)[*dg = 1,

so that tr(g)? = |tr(g)|?> for almost all g € K. Hence, tr(g) € R almost
everywhere in K, and this holds everywhere in K since a nonempty open
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set has positive Haar measure. Thus follows by the first statement in
Theorem 3.1. O

Hence, we conclude by the two preceding Lemmas that the covariance
matrix of Z is equal to that given in (9).

4. QUALITATIVE VERSION (THEOREM )

4.1. Strategy and comparison with other approaches. The idea of the
proof of Theorem is the following;:

(1) By the method of moments, it suffices to show that the moments of
the random variable (1) tend to that of the Gaussian N.

(2) We show that the probabilistic model of Section 3 is accurate, in the
sense that the moments of (1) converge to that of the model.

(3) To conclude, it suffices to apply the central limit theorem (with con-
vergence of moments) to the model.

This is to be compared with the approaches of earlier works which do not
use the central limit theorem:

— Davenport-Erdés | | and Mak-Zaharescu | | directly show
that the moments of (1) are asymptotically Gaussian and apply the
method of moments.

— Lamzouri | | first proves that his probabilistic model is accu-
rate as in step above. He then remarks that the random variable
X modeling the values of the Dirichlet characters itself has moments
bounded by those of a Gaussian. That allows to approximate the
characteristic function of the model for the sums by that of a Gauss-
ian. By using a method of Selberg, this finally gives an approximation
for the joint characteristic function. We will comment more on this
approach in Section

We shall see that with the ¢-adic formalism, the proof that the model is
accurate becomes very natural and does not involve explicit computations
of moments.

4.2. Accuracy of the model. Under the hypotheses and notations of The-
orem , as in Proposition the moment

Mq(k, 73 1,) i= B (S(tg, I + 2)" Sty I, + @)

equals
k r
2 2 (k . > (r ) > (16)
ki+-+kg=kri+-+rg=r 1..-~FH 1---TH
k;=0 r;=0
1 l -
- 2 th@ﬁ +a;) it (x + a;)"
q zeF, i=1
for all integers k,r > 0, where I, = {ay,...,ag}. Thus, by Proposition ,

we need to compare “sums of products” of trace functions

H
Z th(x + ai)kitq(x + a;)ri (17)

zelfy i=1

1
q
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with products of the form

H
[ [ty (Std®* @D(Std®™)) (18)
1=1

when k;,r; = 0 are integers.

4.2.1. Sums of products of trace functions. The estimation of sums of the
form er]Fq Hfil ti(z) for t; a trace function over IF,, is precisely the question

that is surveyed in | |, and the link between (17) and (18) can be
made clear through a cohomological interpretation of the sum via Theorem

— For k,r € N let us consider the sheaf

= ® ([+ai]*}'{?’“i®D([+ai]*7’q)®”>-

1<i<H

By Theorem 2.5, under the hypotheses of Theorem , (17) is equal to

tr <Frobq ] gfél’om> +O(r3*mS(k,r)cPqV?)
1.q
where the implicit constant is absolute, r = rank(F;), ¢ = cond(Fy), and
S(k,r) = 20, (ki + 7).
— By the Goursat-Kolchin-Ribet criterion of Katz, if F; is part of a coherent
family in the classical case, then the arithmetic and geometric monodromy
groups of

G= P [+a]*F,

1<i<H

coincide and are as large as possible, i.e. isomorphic to GH.
— Thus, by Remark 2.9,

tr (Frobq | (gk,r)ﬂ—%i;’m> = dimAg,,,.(g) = dimAgn

dim (Std@“ ®D(Std)®”)G

1<i<H

[] mult:(Std® @D(Std)®™),

1<i<H

for the GH-representation A = [X},; (Std®ki ®D(Std)®").

Remark 4.1. As mentioned in Remark , the conductor of GF™ is un-
bounded as H — o0, so that, in contrast with | |, we have to keep
track of the dependency with the conductors in the error terms.

Finally, we get:

Proposition 4.2. Let (F;), be a coherent family of sheaves over Fy, with
monodromy group G < GLy(C). Let a1,...,ag € Fy be distinct. If Fqy is
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{ay,...,am}-compatible, then for all k,r € N7,

1 —_— . .

p Mo tr@+a)fitr@+a) = ] multy(Std® @D(Std)®™)
weF, 1<i<H 1<i<H

+0 (Ts(k’r)S(k, r)q_1/2>
where the implicit constant does not depend on q, and S(k,r) = >,;_ (ki+r;).

Proof. The proof in the case of a classical monodromy group was sketched
above; details can be found in | | or | |. For a Kummer sheaf
L. sy with x : F* — C of order d and f € F,(T'), the sum is by multiplica-
tivity equal to

1 1

- 2 X(g(.%‘)) =~ Z tﬁx(g)('r)a

q z€F, q €y
where g(X) = [T1<;cpr [ (X +a)" . Writing f = f1/f2 and g = g1/g2 with
fis gi € Fo[X], we see that deg(g1) + deg(g2) < S(k,r)(deg(f1) + deg(f2)) <

S(k,r)cond(F,). By Theorem and Remark applied to the Kummer

sheaf L, (4), it follows that

1
& Z x(9(z)) = 59 is a d—power T O(S(k, r)c2q_1/2).

zelFy

Observe that mult; (Std®* @ D(Std)®") = Odlk;—r;» SO that the claim is clear
if f = X. Otherwise, the compatibility assumption shows that” there exists
a zero x of f such that f(z + a) # 0 for all a € I. Indeed, otherwise, for any

zero x of f and any integer dy > 0, there would exist ay,...,aq4, € Fq with
r+ai,...,x+ Zfi 1 a; distinct zeros of f, which is impossible. This implies
that g cannot be a d-power if d { k; — r; for some i. O

4.2.2. Conclusion. The asymptotic accuracy of the model then follows from
Proposition applied to (16), recalling that Zk1+-~+kH:k, k=0 (klkkH) =
HF:

Proposition 4.3. Under the hypotheses of Theorem , for all integers
k,r =0 and I, < IF, of size H, we have
My (k73 1) = My (k75 H) + O (X0 g7 1/2 )
with ¢ = max, cond(Fg).
We make the normalizations
S(ty, I, + x) = S(ty, I, + x)/|I,|V/* and S(H) = S(H)/H?,

and for k,r = 0 we denote by Mq(k, r;1q), Mprob(k, r; H) the corresponding
moments, so that Proposition becomes:

My (k, 13 I,) = Moon (k73 H) + O (c?’(’““")q*l/?H’“?) . (19)

3This idea appears on page 9 of the published version of | B
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4.3. Central limit theorem.

Proposition 4.4. Under the hypotheses and notations of Theorem ,
the random variable S(H) converges in law to the random variable N* when
H — . Moreover,

lim Mpyon(k, 73 H) = My (k,7),
H—o
for all integers k,r = 0, where Myr(k,r) is the (k,r)-th moment of N.

Proof. This follows from the two-dimensional central limit theorem and Lemma
. To obtain the convergence of moments, it suffices to show that S(H)

is uniformly integrable (see e.g. | , Chapter 5.5]), which follows from

[ , Theorem 7.5.1]. O

By (19), this immediately implies:

Corollary 4.5 (Moments are asymptotically Gaussian). Under the hypothe-
ses and notations of Theorem , we have for all integers k,r = 0 that
lim Mk, r;I,) = My (k,7).

q:qu‘_>OO

4.4. Method of moments and proof of Theorem . To conclude
the proof of Theorem , it now suffices to apply the method of moments:

Proposition 4.6 (Method of moments for complex-valued random vari-
ables). Let (X,)n=0 be a sequence of complex random variables with mo-
ments Mx, (k,r). If lim, o Mx, (k,7) = Mx,(k,r) for all integers k,r = 0
and if

| My, (k, )| 7

lim sup < 00,
k+r—o0 k+r
then X, converges in law to Xy.
Proof. See for example | , Chapter 5.8.4]. O

Corollary 4.7 (Method of moments for normal convergence). Let (X;,)n>0
be a sequence of complex random wvariables. If for all integers k,r = 0,
the moment Mx, (k,r) converges to the corresponding moment of a normal
random variable N' as n — o0, then X, converges in law to N .

Hence, by Corollary 4.7, Theorem follows directly from Corollary

5. QUANTITATIVE VERSION (THEOREM )

5.1. Review of Lamzouri’s method. We recall that the idea of | |
is to remark that the random variable Z modeling the values of the Dirichlet
characters has moments bounded by those of a Gaussian. In particular, this
implies that if S(H) = Z; + --- + Zy with Z; independent distributed like
Z as above, we have

E ((Re S(H))?* (Im S(H))QT) « (k + r) HFT
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(see | , (3.5)]), which is a square-root cancellation over the trivial
bound H2*+7)(2k + 2r)!. This implies that one can:

(1) Approximate the characteristic function of (S(xy, z, Hp))zeF, asymp-
totically by that of the probabilistic model when p, H, — o (see the
proof of | , Theorem 3.1]).

Lamzouri then proceeds as follows:

(2) As in the classical proof of the central limit theorem, the character-
istic function of the model is approximated by that of a Gaussian
( , Lemma 3.2|).

(3) Combining the last two points, this gives an asymptotic approxima-
tion of the characteristic function of (S(xp,, Hp))zer, by that of a

Gaussian (| , Theorem 3.1]).
(4) Using a smooth approximation for the sign function involving char-
acteristic functions, due to Selberg (| , (4.4)]), one gets an

approximate expression of the joint distribution function from the
characteristic function, which allows to conclude.

5.2. Generalization to trace functions. As we explained in the introduc-
tion, this can be generalized to coherent families of trace functions thanks to

Proposition . We will however proceed a bit differently than Lamzouri,
skipping steps (2)—(3) above and:
(1) Directly use step to approximate the joint distribution function

of the random variable (1) by that of the model.

(2) Apply a generalization to higher dimensions of the Berry-Esseen the-
orem appearing in | |, to obtain an approximation of the joint
distribution function of the model.

5.3. Characteristic function of a Gaussian. Let us recall that if Z is a
normal random variable in R with mean 0 and variance o2, the moments are

E(Z) = Ok %fk‘?l%sodd
o¥(k—1!! if k> 0is even

. .. . . ; _1.2,2
and its characteristic function is u — E(e??) = ¢727 .
Hence, if Z is a normal random variable in C =~ R? with mean 0 and

diagonal covariance matrix o (§$), then its characteristic function is

- ] a2
(u, ’U) — ¢(u7 ’U) —E <ez(uReZ+vaZ)) _ 6_7(u2+”2).

As we explained in Remark , we will continue to rather work with
moments of the form E(Z¥Z7) and characteristics functions of the form
(u,v) — Pp(u,v) = E(e/*Z+v2)) which renders the computations easier and
more natural in our setting. Note that

d(u,v) = ¢(u+v,i(u—v)) and

Huv) = ¢<u;iv’u;iv> (20)

for all u,v € C. Hence, ¢(u,v) = e"27% 5o that E(Z*Z7) = (20%)*k!6)—,.
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5.4. Approximation of characteristic functions through moments.

Lemma 5.1. Let X1, Xy be complex random variables with moments M;(k,r) =
E(Xkﬁ) and characteristic functions (u,v) — ¢;(u,v) = E(elUXitvXs))
(j=1 2) for u,v € C and k,r = 0 integers. Assume that

My (k,r) = Ma(k,r) + O(g(k,r))

for all k,r = 0 with some g : N> — R. Then for any fized even integer N >
and u € (C, we have

N
br(wm) = ¢2<u,u>+0(" (IMy(N/2.N/2)] + [Ma(N /2, N/2>\>)

10 213 (ot o)

n<N = a=0

In particular, if g(k,r) = h(k + r) for all k,r = 0 for some h : N — R, we
have

N
or(u,T) = ¢2<u,u>+0(' UL (A0 (N /2, NJ2)| + M2, N/2>|>)

+0 (SL% Ih(n)|(1 + yu\N>> .

If X1, X5 are random variables in R, then a similar relation holds for ¢1(u,0)
and ¢2(u,0) with u € R.

Proof. 1t suffices to use the expansion e = >, _yi"z"/n! + O(|z|V/N)

valid for « € R. (]
5.5. Bounding moments. In order to apply Lemma , we will need
bounds on the moments Mo (N, N; H), provided by Proposition . Re-
call that by Proposition 3.3, we have
E(ZFZ]7)
) _ ATI2
Mprob(N, N; H) = N! > > H Y
ki+-+kg=Nri+--+rg=Ni=1

Note that if all Z; were normal variables in C with mean 0 and covariance
matrix o2 (§9) (resp. 02 (§9)), then this would be equal to (202)N NIHY

(resp. 02N (2N — D)INHN).

Proposition 5.2 (Non-self-dual case). If the conclusions of Proposition
hold, then in the non-self-dual case, Mpon(N, N; H) < (N + H — 1)NHN.

Proof. By the Cauchy-Schwarz inequality,

Z N! HN(N+H—1)!

Mprob(N, N3 H) < | < —
prob( ) VELL k! (H—1)!

kit k=N
k;=0
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since the number of weak H-compositions™ of N is equal to (N tH 71). Finally,

H—1
Weusethat%é(]\f—kfl—l)]v. O

Remark 5.3. In Remarks and , we explained that the reason for the
restriction on the range in Theorem for the non-self-dual case came from
the fact that X; may have infinitely many nonzero nondiagonal moments. If
(11) in Theorem held for all distinct k,7 > 0, then we would get the
bound HY instead of HY (N + H —1)". We will see later how this additional
exponential in H modifies the aforementioned range.

For Dirichlet characters, we can achieve the following better bound:

Proposition 5.4 (Non-self-dual case, Kummer sheaves). In the case of
Kummer sheaves, we have My (N, N3 H) < NIHN.

Proof. If Z is a random variable uniformly distributed in p4(C), then

d—1
o 1 i(k—r
E(2*77) = 5 ), ) = Gy, s0
=0

N!
Mprob(NaN;H)<N! Z W<N'HN
kit +kg=N (Fat.. ko)
k;=0
U
Remark 5.5. Actually, Lamzouri | | models Z as a random vector uni-

formly distributed on the unit circle S'. This is equivalent since the moments

are then
27

E(ZV77) = o f =) g — 5o (ko1 > 0).
™ Jo

Proposition 5.6 (Self-dual case). If the conclusions of Proposition
hold, then in the self-dual case,

Myob(N,N; H) < (2N — HIHY.

Proof. Since (k — 1)!l = W for k > 1 odd,
@eN) &k
Mprob(NaN;H) < 2 T
kit +kg=2N ko kgl 2 i2(ki/2)!
k; =0 even
(2fvj)v! > ( N/2 ) = (2N — HIHN.
N2 Mt tmpg =N mi... My
m;=0

O

4Recall that a weak H -composition of an integer N is a tuple of nonnegative integers
(k1,...,km) such that k1 + --- + kg = N.
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5.6. Approximation of joint distribution functions through charac-
teristic functions. The following result appears in | |, and follows
from a smooth approximation of the sign function (and thus of the charac-
teristic function of a rectangle in R?) by Selberg in [ .

Proposition 5.7. Let X be a complex random variable with characteristic
function ¢x (u,v) = E (eluReX+vImX)) (4 4 e R) and A = [a,b] x [c,d] be
a rectangle in R? = C. Then, for any real number t > 0,

P(Xed) = ;mﬁjkﬂwmﬂww@ﬂ%%—%mﬁﬂmhdm
—ox (2mu, QFU)fa’b(u)fC’d(U)> CLU dl

u v

+0 (4 [ Gox(em.0) + 6x(0.2mu)a

0

where G(u) = 2u/m+2(1 —u) cot(wu) for u e [0,1] and f, p(u) = (e(—ou)—
e(—pu))/2 forueC, a,f € R.

Proof. See | , Section 4. O

Corollary 5.8. If X,Y are complex random variables such that there exists
a nonnegative continuous function g : R?> — Rxq with

ox (2mu, 27v) = ¢y (2wu, 27v) + O(g(|ul, |v]))

for all u,v € R, then we have, for any A,t as in Proposition 5.7,

P(XeA) = P(YeA
+0 <f0t Ltg(u, v)dudv + 1£(g(u, 0) + g(O,u))du>
+0 <1 Lt(|¢x(27ru,0)| + ¢X(0,27ru)|)du> |

5.7. Central limit theorem and sums of quasi-normal random vari-
ables.

Lemma 5.9. For H > 1, let X4,..., Xy be independent identically dis-
tributed random variables and consider

Xyt 4 Xy

VH

Assume that for 0 < k,r < N, the moments M(k,r) = E(X¥XT) of X1
correspond to the moments of a normal random variable in C with mean 0
10

and covariance matriz o* (§9), respectively (UO2 8). Then the characteristic

function ¢ (u,v) = E <ei(“S(H)+”m)) of S(H) satisfies

— —202|ul? ‘u|N

S(H)
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when u € C with |u| < H%, respectively

o (u,0) = e 27 (140 ﬁ
’ H(N-1)/2

when u € R with |u| < Ho.

Proof. By independence of the X;, we have ¢ (u,v) = ¢(u/vVH,v/vVH)H
where ¢(u,v) =E (ei(“X””Xl)) is the characteristic function of X;. Then

212 ||V "
—20°|ul?/H e
<e +0 <H(N+1)/2>)

N
—202u)? |u|
‘ <1 Lo <H(N1)/2)>

in the first case, since (e? + O(a?)) = e (1 + O(a?H)) if a®?H < 1. The
second case is similar. O

¢H(u,ﬂ)

5.8. Normal approximation. Below, we give a particular case of the gen-
eralization of the Berry-Esseen Theorem in higher dimensions appearing in

[ J

Proposition 5.10. Let Xi,..., Xy be independent and identically distributed
random vectors in R?, satisfying

E(X;) =0, and E(||X1||*) < oo,

and let S(H) = (X1 + --- + Xg)/VH. Then for any A < R? Borel-

measurable,
P(S(H) € A) = P(N € A) + O(u(A)H™'/?),

where N is a normal random vector in R2 with mean 0 and covariance

COV(Xl).

Proof. This follows from | , Theorem 13.2| taking d = 2 and f = 14.
Note that, under the notations of the latter,

Hlog H

A
0g €« —5— and w?(27/27r_1/324/3p3H_1/2 1 P) « )
e

vH

for some absolute constant C' > 0. Thus, for ® the density function of N/,

1 log H 1 1
d(S(H) — ® R?
L (S(H) )‘ < wyl )<\/ﬁ+ i +H\/logH+eCH\/HlogH>
+w?(27/27r*1/324/3p3H*1/2 . ®)
< p(AYH2,
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5.9. Proof of Theorem . Combining the above results, we can finally
prove Theorem , conditionally on Proposition . Let us consider the
characteristic functions

¢q I(U7 U) -k (ei(ug(tq,]+m)+v5‘(tq,l+z))> (u’ ve (C)

of the normalized complex-valued random variable (S(t, I + T))zeF, and
o (u,v) = E (ei(uS(H)-i-vS(H))) (u,v € C)

of the random model
X1+ +Xpy
VH ’

where H = |I|. Recall that by (19), we have for all integers k,r > 0

S(H) =

My(k, 73 1) = Myroy(k, 7 H) + O (03(k+r)q71/2ﬂky) '
Let us fix 0 < e < 1/2 and let

log q
N =2M<e————— 21
“log(c5H) 1)

be an even integer, so that in particular ¢8M¢=1/2HM < ¢=1/2+¢ and
My(M, M;T) = Mpron(M, M; H) + O(g~ 7).

By Lemma 5.1, we find the following relation between the characteristic
functions:

(bq,f(u?ﬁ) = (Z)H(uaﬂ)
N
+0 ('“' | Mipron (M, M; H)| + ¢~ Y245 (1 4 \u|N)> .

N!
Let t = M®/(2m) for some o > 0 to be determined later. We apply
Corollary after making a change of variable with (20) to consider char-

acteristic functions arising from (u,v) — uRe X +vIm X (u,v € R) instead
of (u,v) = uX +vX (u,v e C). For all u,v € R, we then have by Holder’s
inequality

P(S(ty, I +x)e A) = P(S(H)e A)

+0 (4 [ Gomtma mu) + i, —im))iu)

+0 U: L tg(u,v)dudv)

+0 C L (9. 0) + g(O,u))du) (22)
where . yN ~

olen) = 20 [T

| Mypron (M, M; H)| + ¢ 2451+ 2N + yN)} :

Let us bound the three error terms in (22) one after another:
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(1) For the first one, note that

1t 1
tf |prr (2w, 27mu)|du < tj |prr (2w, 27mu)|du.
0 R

Using Lemma and the assumptions on the moments, we have

R
_—u?/2 |’LL|
op(u,u) =e (1 +0 <H(R1)/2>>

for |u| < H'®® . Since s e™"*/2 < o0, the error term becomes O(1/t) =
O (M~%) under the condition

ot < H2R | i.e. M < H3Ra. (23)
(2) The second term Sf) Sf) g(u,v)dudv is bounded (up to a constant) by
Myrob (M, M H) (2mt)*M+>
(2M)! M

g HE <(2m)2 + WA;MH> . (24)

By Propositions (non-self-dual case), (Kummer case) and
(self-dual case),

(M + H —1)M  non-self-dual case
Mprob(M, M;H) << M! Kummer case
(2M —1)!! self-dual case.

By Stirling’s approximation, the first summand of (24) is bounded (up
to a constant) by:
— In the Kummer case: MM@e—1)+2a-1

_3 _ 14 log(e/2)
— In the self-dual case: M2a 2+M<2a 1+ Jogar )
— In the non-self-dual case:

A M
Ap2at <‘1 (M2 4 FM22 - MQ‘H)) «METE L (2)

if &« < 1/2 and under the additional condition M » H 5. With
(21), this imposes the more restrictive range

2—2a
H=o0 ((]Og q) 1+5(272a)>
and the condition
1 - R—-1 | < R—-1
< ,le a<
2 -2« 2R« 2R—1
because of (23).

By (23), the second summand of (21) is O (¢~¥/%72) iflog H/logq < &
since

(26)

_ log H R—
(271't)2 < HY — qloggq e and

(27_rt)2M+1 < H3

ME=L 3(R-1) _

2R gq 4R
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(3) Under the same conditions, the last error term %Sé(g(u, 0) + ¢g(0,u))du
of (22) is bounded by the first one.

Hence, the error term in (22) is:

— In the self-dual and Kummer cases
0 (M_a N M2a71+M(2a71+%> N q_§+25> .

M(1- 182 1
. . . log M .
We optimize by taking o = ——7,-5——, which leads to an error

term of O (M—1/2+€ + q—l/2+2€)'

— In the non-self-dual case, O (M~* + q_1/2+25) (since 2a —3/2 < —«
R—1
2R—1

R—1
obtain the error term O (M_ 2R-T 4 q_1/2+25) for the range

and we

when a < 1/2). By (20), we optimize by taking o =

2R
H= 0((logq)m).

Finally, after letting
. r-1 € loggq
M = H2Ra  —————— | | > 40
e (95 ) |~
we can apply Proposition to S(H), and combining with (22) gives The-
orem

6. TRACES OF RANDOM MATRICES IN CLASSICAL GROUPS

In this section, we prove Proposition , which will conclude the proof
of Theorem . In comparison to earlier works, recall that it is important
for us to obtain bounds on moments of high order with respect to the rank.

6.1. Special linear case.

Proposition 6.1. Let N = 2 and let X = tr 0, where 0 is a random variable
uniformly distributed in SUN(C) with respect to the Haar measure. For k,r >
0 integers, let us consider the moment M (k,r) = E(X¥X7). Then:

(1) We have

M(k,7) = Onjpr > dim S dim Sy (,v)
Ak
[(NSN,An=—a

where a = (k —r)/N and S, respectively Sxiq, is the Specht Sy-

module (resp. &,-module) associated to the partition X\, respectively

At (@) =X+ (a,...,a).
(2) M(k,r) < VEklr!.
(3) M(k,k) =k! if k < N.
(4) M(k,r)=07ifk,r <N and k # r.

Proof. We use the same technique as in | |, but we also need to handle
the case k,r = N.

Let Std be the standard representation of SUyx(C) in GLy(C). Recall
that the irreducible representations of SLy(C) (and hence of its maximal
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compact subgroup SUx(C)) are the Schur-Weyl modules Sy (Std) indexed by

partitions A of length I[(A) < N (see | , 15.3]). Moreover, the character
of S)(Std) is given by the Schur polynomial sy evaluated on the eigenvalues
(see | , L.3] or | , 6.1]). For A = (Aq,..., ), recall the power

symmetric polynomials
PA = DAy - -- Py, Where py, = 27" + - + 2y for any m e N.

By the representation theory of the symmetric group and the theory of
symmetric polynomials (see | , 1.7.8]), we have the decomposition of
py into the basis of Schur polynomials: for any partition A of length < k,

Py = Z Xu()\)sua

ek

where x, (M) is the character of the irreducible Specht &j-module S, cor-
responding to A, evaluated on the conjugacy class corresponding to A. In
particular,

(w14 +ay) = ) dimSusu(e,...,2n).

p=k
l(w)<N

Since (1 + - +2n)¥ (resp. s,(21,...,2y)) is the character of Std®* (resp.
of the irreducible representation S, (Std)) evaluated at a matrix whose eigen-
values are z1,...,xy, we get by orthogonality that M (k,r) is equal to

j tr(g)*tr(g)’dg = >, ). dimS,, dim 51208, (Std)=S,,, (Std)-
SUN(C)

pikk  pebEr
(i) <N L(n) <N

(27)
The Cauchy-Schwarz inequality yields

Mk, < ) (dimS,,)* D (dimS,,)* <klr! (28)
puikk patr
I(p1)<N l(p2)SN
since the Specht modules S, (1 - k) give the irreducible representations of
the symmetric group Sy (see | , 1.7]). Hence we obtain
Next, note that S, (Std) =~ S,,(Std) if and only if p2 = w3 + (a’¥) for
some a € Z (see | , - 223]). If the latter holds, we have N | k —r,
a=(k—r)/N,l(u1) <N and (u1)ny = —a. Thus (27) becomes

M(k,r) = > dim Sy dim Sy | ;)

Ak
IA)<N, Ay=—a

if N'| k—r and 0 otherwise. This gives
Let us now assume that k¥ < N. We then automatically have [(\) < k < N
for every partition A of k. If moreover k = r, then a = 0 and

M(k,k) = > (dim Sy)® = k!,
Ak

which is (3). Finally, if 0 < k,7 < N are distinct, then N { £ — r and
M (k,r) = 0, which is (4). O
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Remark 6.2. (see also Remarks and ). The second bound we have
given in (28) is not asymptotically tight for £ # r. However, replacing it by a
better asymptotic would not improve the results (or in particular recover the
range log H = o(log ¢) in the non-self-dual case of Theorem ). Indeed,
Regev | , Corollary 4.4] used the hook-length formula to show that as
k — oo, we have

N2k
. 2
;k (dlm S)\) ~ C(N) k(Nz—l)/Q’
IN)<N

where C(N) = NN?/2 (27r)(1_N)/2 9(1-N%)/2 1—[27:—11 n!. The bound (25) be-
comes

((1 +€)C(R+ 1))H MQa_% (HMQOC—Q(R_’_ 1)2)M
for any € > 0, for which we still need the restricted range M > H ﬁ

6.2. Symplectic case.

Proposition 6.3. Let N = 1 and X = tr6, where 6 is a random variable
uniformly distributed in USpyn (C) = Span(C) N Usn (C) with respect to the
Haar measure. For k = 0 an integer, let us consider the moment M (k) =
E(X*). Then

(1) M(k) =0 if k is odd.

(2) M(k) < (k— 1D if k is even, with equality if k < N.

Proof. Let Std be the standard representation of Spyy (C). As in the simple
linear case, recall that the irreducible representations of Spyx (C) (and hence
of USpyy(C)) are given by the Weyl modules S,y (Std) indexed by partitions
g with I(p) < N ([FH91, 17.3]). By Peter-Weyl, M (k) = mult; (Std®¥). By
[ , Theorem 6.15], we have the decomposition

Std®* = @ fE(N)S(Std),
l(u)HSN

where fl’f(N) is the number of sequences of partitions (& = ug, ...,k = )
such that

(a) two consecutive partitions differ by exactly one box in their Young
diagrams, and
(b) I(u;) < N for all 4.
Hence, M (k) = f¥(N), so that is clear. By | , Lemma 8.3|, when
k is even, the number f/]f of sequences of partitions (& = pug,...,ux = p)
verifying satisfies f& = (k — 1)!, whence since f2¥(N) < f2*, with
equality if k£ < N since then I(p;) <i < k. O

Remark 6.4. When k& < N, this is proven in | , Theorem 6] by using
the analogue for Sp of the Schur-Weyl duality, through the Brauer algebra
D¢(—2N), following results of Wenzl and Ram (see in particular | ,
Theorem 4.4 (c), Corollary 4.5 (c)]). However, this cannot be exploited when
k > N since Dy(—2N) is not semisimple in that case.



28 Gaussian distribution of short sums of trace functions
6.3. Special orthogonal case.

Proposition 6.5. Let N = 2 and X = trf, where 0 is a random variable
uniformly distributed in SOy (R) with respect to the Haar measure. Let us
consider the moment M (k) = E(X*) for k = 0 an integer. Then:

(1) M(k) =0 if k is odd.

(2) M(k) < (k— 1D if k is even, with equality if k < |N/2|.

Proof. This is similar to the symplectic case. Let Std be the standard rep-
resentation of SOy (R).

(1) (Case N = 2N’ + 1 odd). By | , Theorem 4.2], we have the
decomposition
Std®F = C—MD FF(N")S,(Std),
I(w)<N'

where S[,,;(Std) is the irreducible representation of SOgn/11(RR) as-
sociated to the partition p (obtained from the Weyl module, see
[ , 19.5]) and F; l’f(N ") is the number of sequences of partitions
(& = ug, ..., pr = 1) such that:
(a) two consecutive partitions either differ by exactly one box in
their Young diagrams, or are equal of length N’ and
(b) I(u;) < N for all i.
Hence, M (k) = FF(N'). Clearly, FF(N') < f§(N') < f¥ with equal-
ity if kK < N’, where fé“(N’) and fé“ are as in the proof of Proposition
. The result follows then from the latter.

(2) (Case N = 2N’ even). By | , Corollary 4|, we have for SOqn(R)

the decomposition

Std® = @ Gy (N')S,(Std),
l(u)uéN’

where Gﬁ(N’) is the number of sequences of partitions (& = po, ..., ik =

1) such that:

(a) two consecutive partitions differ by exactly one box in their
Young diagrams, and

(b) for every 0 < i < k, the sum of the length of the first two
columns in the Young diagram of p; is < N'.

Thus, we have again Gﬁ(N’) < fE(N') < f¥ with equality if & < N/,

since the Young diagram of u; contains at most ¢ < k boxes.

O

Remark 6.6. As for the symplectic case (see Remark ¢.1), this is proved when
k<N in| , Theorem 4], by using | , Theorem 4.4 (b), Corollary
4.5 (b)], but again this method cannot be applied when k > N.

The idea of Sundaram in | | and | | is to define tableaux gener-
alizing the Robinson-Schensted-Knuth correspondence and to prove a gen-
eralized insertion scheme. The symplectic case actually goes back to Berele,
and the odd-dimensional orthogonal case is an extension of the latter. For
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orthogonal groups, there are also generalized tableaux by King-Welsh, Koike-
Terada and Fulmek-Krattenhalter, but these do not have at first an easy
combinatorial description.

7. EXAMPLES: COHERENT FAMILIES

In this final section, we give examples of coherent families arising from the

examples of Section , so that Theorems and apply.
The construction of the sheaves and the computation of their monodromy
groups come from Katz’s works | , |. It usually remains to argue

that the conductor is bounded independently from ¢, show the independence
of shifts and to show that the arithmetic and geometric monodromy groups
coincide (eventually up to twisting, see Section 2.5). We start by two tech-
nical sections with tools to do so, before treating the examples successively.

7.1. Independence of shifts. Showing that a geometric isomorphism of
the form (8) does not exist can usually be done by looking at the ramification
on both sides.

Lemma 7.1. Let F be a nontrivial {-adic sheaf over Fy and let a € Gy, (Fy)
such that there exists a geometric isomorphism of the form (8). Then
(1) Sing(F)A(Sing(F)—a) < Sing(L) < Sing(F) u (Sing(F) —a), where
A denotes the symmetric difference.
(2) If Sing(F) n AL(F,) # @, AL(F,), there exists x € Sing(F) n AL(F,)
such that Fl= = 0.
(8) If Sing(F) # &, {0}, the sheaf L is not geometrically trivial.
(4) If L is not geometrically trivial,

|Sing(L)| + ). Swan,(£) > 2. (29)
xeSing(L)

(5) If F has unique break t € Rsq at x € PY(F,), then the break decom-
position of F @ L at x is

(F®L)(Swany (L)) if t < Swane (L
FRL=L(FRL)(t) if t > Swang, (L) (30)
2 (F®L)(2) if t = Swang,(L).

)

(6) If F has unique break t € R at oo, then Swany, (L) < t. If t is not
an integer, then Swaney, (L) < [t].

Proof. (1) This is clear.
(2) If z € Sing(L) — Sing(F), then

Fleto > ([+a]*F)r 2 (FR L) = Fo Ll =0.

In particular, by (1), if y € Sing(F) but y — a ¢ Sing(F), then
Flv = 0. If z € Sing(F) n AY(F,) and AY(F,) ¢ Sing(F), there
exists an integer m > 1 such that y = z — (m — 1)a € Sing(F) but
x — ma ¢ Sing(F), whence the conclusion.

(3) By (1), L is not lisse under the assumptions.
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(4) The Euler-Poincaré formula of Grothendieck-Ogg-Safarevich gives
that the left-hand side of (29) is equal to
2+ dim HY(Ug x Fy, £) = 2
if £ is nontrivial.
(5) This follows from | , Lemma 1.3|.
(6) By (30), we have
rank(F) Swang (£) if t < Swane (L)
rank(F)t if ¢ > Swany, (L).
On the other hand, by (8)
Swane (F ® L) = Swang, ([+a]*F) = Swane (F) = trank(F),
which implies that the case ¢ < Swany (L) cannot hold. The last

statement follows from the fact that the Swan conductor is an integer.

O

Swang (F ® L) = {

)

The following classification result will also be useful:

Lemma 7.2. Let F be a geometrically irreducible £-adic sheaf over F,.
(1) If Sing(F) = @, then F is geometrically trivial.
(2) If | Sing(F)| = 1 and F is tamely ramified, then F is geometrically
trivial.
(3) If Sing(F) = {z,y} for z,y € PX(F,) distinct and F is tamely rami-
fied, then there exists a multiplicative character x : Fy — C* and a
geometric isomorphism

F = Ly(X—y)/(X—y))-

(4) If Sing(F) = {x} and Swan,(F) < 1, there exists an additive char-
acter ¢ : Fy — C* and a geometric isomorphism

I~ Ly if t = o0
- Lvasx—ay w0

Proof. See | , Proposition 4.4.6]. O

7.1.1. Arguments with unipotent blocks.

Lemma 7.3. Let G an (-adic sheaf over F, such that Sing(G) n AY(F,) #
@, AYF,). For every s € Sing(G) n AL(F,), we consider the tame part of
the break decomposition of G at s,
g(s)tame = @ (Unip' ®['X(X+s)) ; (31)
X

and we assume that either the trivial multiplicative character x = 1 appears,
or that at least two distinct characters x1, x2 appear. Then there is no iso-
morphism of the form (8) with a # 0.

Proof. Let us assume that there is an isomorphism of the form (8) for G
with a # 0. If the break decomposition of G at some s € Sing(G) n AL(F,)
does not contain a summand Unip. ®L, (x 1) With x trivial, we replace G
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by G ® Ly, (x+s), Where X1 is a character appearing in (31). This new sheaf
still satisfies the same hypotheses as G, with the same a in (8) (but with a
different £), and with a unipotent block in the break decomposition at s.
Recursively, we can hence assume that the tame part of G at any s €
Sing(G) N AY(F,) contains a unipotent block.
By Lemma , there exists s € Sing(G) n A}(F,) such that G% =0, a
contradiction. O

Lemma 7.4. Let ¢ : F; — C* be a nontrivial additive character and let
G = FTy(F) be the (-adic Fourier transform of a Fourier sheaf F over Fy,
with rank(F) < q—1. For all s € A'(F,), we consider the break decomposition

Of]:(s) = F@ﬁw(sx) at o0:

~F(s) _ @ .F(S) (t) _ F(s),tameC_BF(s),wild
teR;o
= (69 (Unip(x. 5) ®£X(x+s))) ® <€a f(s)(t)> . (32)
X t>0

We assume that:

— The decomposition (32) at s = 0 contains at least one break t € [0, 1].

~ For all s € A1(F,) such that the decomposition (32) contains a break
t € [0,1), either the trivial multiplicative character appears in the
tame part, or the latter contains at least two distinct characters.

Then there is no isomorphism of the form (8) for G with a # 0.

Proof. By | , Corollary 8.5.8] (see also | , Corollary 7.4.5|), the first
assumption and the condition on the rank of F imply that Sing(G)nAL(F,) #
@, AY(F,). Moreover, s € Sing(G) n AL(F,) if and only if the decomposition
(32) contains a break ¢ € [0,1). By | , 7.4.4(3)], the tame part of the
break decomposition of G at s is in this case

@ (Unip(x,s) @ Ly(x+s))
X

(with the same unipotent blocks). It suffices to apply Lemma 7.3 to conclude.
O

7.2. Equality of arithmetic and geometric monodromy groups. In
| |, often only the geometric monodromy group Ggeom = Ggeom(F) of
an (-adic sheaf F over [y, or its connected component

0
Ggeom < Ggeom < Garith = Garith(-/—:)a

are directly given. As is explained in | , 7.11-7.14] and | |, it is
usually possible to get

0
Ggeom = Ggeom = Glarith,

up to twisting F by a rank 1 sheaf, or even, ideally, a constant:

— (Symplectic case) This is the simplest case. Proving that Ggeom =

Sp,,(C) with the techniques in | , Chapter 7] actually shows that
the sheaf is itself symplectically self-dual (see | , 7.13, p. 244)),
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as for Kloosterman sheaves (see | , 4.1.11]). Hence Guitn <
Sp,,(C) and thus Ggeom = Garith = Sp,,(C).

— (Special orthogonal case) Similarly, proving that Ggeom = S50,(C) (or
0,,(C)) with the techniques of | , Chapter 7] actually shows that
Garith € Op(C) (see | , 7.14, O-Example(2)|). Hence, there ex-
ists v € {#1} such that 7/ = /" ®F has Ggeom(F') = Garitn(F') =
SO, (C).

— (Special linear case) This is the hardest case. Assume that Ggeom =
Ggé%% = SL,(C). We can determine the geometric determinant

det(F) and twist it by a rank one sheaf £ to make it geometrically
trivial, hence arithmetically isomorphic to a ® Qy, for a Weil num-
ber a of weight 0 (which may be difficult to determine explicitly).
If we let /' = a1/ ® L ® F, we have Garith (F') © SL,(C) and
SLn(C) = Goeom © Geom(F') since GYop, is equal to its derived
subgroup and £ has rank one. This gives

Ggeom(fl) = Garith(f/) = SLn(C)
Moreover, it happens in some cases that £ is arithmetically constant,
so that F/ = o~ V" ® F is simply a renormalization of F.

7.3. Kummer sheaves: multiplicative characters.

Proposition 7.5. A family (F), of Kummer sheaves Ly, where deg(f)
1s bounded independently from q and f has no zero or pole of order divisible
by ord(x), is coherent.

Proof. For the construction of the Kummer sheaf, see | , Exposé 6,
Section 1] or | , Section 4.3]. We have cond(L,s)) = 1 + deg(f1) +
deg(fg) where f = fl/fZ with fl,fg S ]Fq[X], (fl, fg) =1. ]

7.4. Kloosterman sheaves.

Theorem 7.6 (Deligne, Katz). Forn > 2 an integer, there exists a Kloost-
erman {-adic sheaf Kl, over Fy, of rank n, with trace function equal to the
Kloosterman sum (3). The family (Kl 4)q odd s coherent, with monodromy
group equal to

SL,(C) ifn odd
Sp,(C) if n even.

Proof. For the construction and computation of monodromy groups, see
| |. We have cond(Kl,) = n + 3. Finally, the independence of shifts
follows from Lemma 7.1, which can be applied thanks to | , 741 O

7.5. Hypergeometric sheaves.

Proposition 7.7 (Katz). Let n = m > 0 be integers with r = m +n > 1,
Xq = (Xig)i<i<n, Pq = (Pjqg)i<j<m tuples of pairwise distinct characters of
. There exists a hypergeometric sheaf H(xy, pg) over Fy of rank n, with
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trace function equal to the hypergeometric sum Hyp(xq, pq) : Fq — C defined
by

1)1 r(T'(x)—-T
tHW 5 (Hm Hmw) ( <<>p <y>>>’

zelFy yeF
N(z)=tN(y)

where N : Fy — Fy is the norm (product of components) and T : Fy — F,
the trace (sum of components). We assume that Ay =[], xi,q = 1 and either:
(1) n=m is odd and T'q =[], pjq = 1 is constant, or
(2) n—m =3 is odd.
Then the family (H(xq, Pq))q is coherent with monodromy group SLy(C).

Proof. The construction can be found in | , Theorem 8.4.2]. We find
that cond(H(x, p)) =n + 3.

The connected component at the identity Ggeom is computed in | ,
Theorems 8.11.2, 8.11.3], and can be SL,(C), Sp,,(C), SO,(C), plus some

d .. .
exceptional cases in low rank. Moreover, GY Gg’eoeffl. The distinction

geom
between the possible cases is not straightforward (see | , p- 291]), but
GOoom = Goiban = SLy(C) if either:

(1) n=mis odd and Ay =1, or

(2) n—m >3 is odd.
To make the arithmetic and geometric monodromy group coincide, we use the
strategy of Section 7.2. By the computation of the arithmetic determinant

in | , 8.12], there is an explicit Weil number o = a(x, p) € Q, of weight
0 such that det H(x, p) = a ® L with

LA®[z—1—z]"Lpy  ifn=m,
L=1LyQ®Lx ifn—m=1,
L ifn—m=>=2.
Under the assumptions of the proposition, £ is arithmetically trivial and
a=1.
The break decomposition of the hypergeometric sheaf is determined recur-

sively in [ , Theorem 8.4.2(6)], and the independence of shifts is then a
consequence of Lemma, 7.4. O

Example 7.8. Thus, families of hypergeometric sums of the form

_1\r—1 —_— T xr)—
(q(rl)l)/Q Z <H Xz T;x pz yzyn1)> (t (T( ) T(y))> (t € Fq)

weFT yeFr  \i=1 p
N(z)=tN(y)

with n odd or

(-1 -

gD/ Z HX’ Lil H
zelFy yeF® \i=1 j=1
N(z)=tN(y)

( r(T'(x) — T(y))
p

> (teFy)

with n —m > 3 odd, are coherent.
For m = 0 and x = (1)1<i<n, we recover the Kloosterman sheaf Kl,,.
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7.6. General exponential sums of the form ().

Proposition 7.9. Let f,g,h € Q(X). If q is large enough to consider
f.9,h € Fy(X) and g (resp. h) has no pole or zero (resp. no pole) of
order divisible by p, we consider the sheaves

F1=Lyn) @ Ly(g), F2 = fuF1,

for ¢ : ¥y — C (resp. x : Fy — C) an additive (resp. multiplicative) char-
acter. If F is a Fourier sheaf, then there exists a sheaf G = FTy(F2) (the
C-adic Fourier transform of Fa) with trace function given by (1). Moreover,
cond(G) is bounded above independently from q.

Proof. The construction of the f-adic Fourier transform can be found in
| , Chapters 5, 8]. The uniform bound on the conductor follows from the

general bound on conductors of Fourier transforms | , Proposition
8.2], obtained from Laumon’s analysis of the ramification of ¢-adic Fourier
transforms | , 7.3-7.5]. O

We can distinguish the following cases:
(i) h = 0 and x = 1, so that F; is the trivial sheaf. These are sums
of the form (0), studied in | , 7.10] and by Fouvry-Michel in

[Micos], [FMO2] and [FAT03].

(ii) F1 is nontrivial and f = X. More particularly, we consider the case
x = 1 and h a polynomial of degree n > 2, which includes Birch

sums (5). These are studied in | , 7.12] and | .
(iii) F is nontrivial and f # X. More particularly, we will consider the
case studied in | , 7.7, 7.13, 7.14] where h is odd with a pole

of order = 1 at o, f # 0 is an odd polynomial, and there exists an
even or odd rational function L with g(z)g(—z) = L(z)°*d00.

7.6.1. Independence of shifts. The following criterion generalizes the argu-
ment of | | for Birch sums to sheaves of the general form of Proposi-
tion and allows to reduce to the case of £ being an Artin-Schreier sheaf
in a geometric isomorphism of the form (8).

Lemma 7.10. In the setting of Proposition 7.9, let us assume that Fs is a
Fourier sheaf, f a polynomial of degree d > 1, n = Swang(F1) > d, and
(n,d) = (d,p) = 1. If there is a geometric isomorphism of the form (8) with
a# 0 for G =FTy(F), then

Swang (L) € {0,1,..., [nﬁd”

Ifn > 2d, there exists an additive character ¢y : Fq — C* such that L = Ly, .

Proof. By | , 7.7], F2 has unique break n/d at oo, thus
Swang, (F2) = (n/d) rank(Fy) = n.
Moreover, G is lisse on Al. By Lemma , Sing(L) < {wo}. We may

assume that £ is not geometrically trivial, the conclusions being clear other-
wise. By Lemma , it follows that Sing(L) = {0} and Swany (L) > 1.
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By | , 7.4.1(1)], G has unique break - at oo, with multiplicity

n—d Swany (F2) =n —d.

n

The break ™ is not an integer since we assume that (n,d) = 1, and the

first conclusion follows from Lemma . For the second one, note that
0 < 2if n > 2d and use Lemma . O

The next lemma consequently considers isomorphisms of the form (8)
when £ is an Artin-Schreier sheaf.

Lemma 7.11. In the setting of Proposition 7.9, let us assume that Fo is a
Fourier sheaf and that there is an isomorphism of the form (8) for G with
a€Fy and L = Ly, for some additve character 1 : Fg — C*. Then

(1) Sing(F2) = {0} or AY(F,) < Sing(F2).
(2) If f = X, then either x # 1 and g is constant, or x =1 and h is a
polynomial of degree at most 2.

Remark 7.12. Since we consider families of sheaves whose conductors are
bounded uniformly from ¢, the condition A(F,) = Sing(F) is clearly ex-
ceptional.

Proof. Let b € F, such that ¢ (x) = ¥ (bzx) (z € F;) and let us assume that
we have a geometric isomorphism

with a € Fy. Taking Fourier transform on both sides of the isomorphism
and using that

[+a]"FTy(F) = FTy(F @ Lywx))
FTﬁ,(FTd,(‘F) ® 'Cw(bX)) = [$ — —b— J/‘]*.F
for any Fourier sheaf F, we get a geometric isomorphism
Fo® £¢(ax) x~ [+(—b)]*]:2. (33)
Then:
— If b = 0, taking determinants shows that a = 0.
— Since the Artin-Schreier sheaf is ramified at most at oo, we have
Sing(F2) n AL(F,) = (Sing(F) n AY(F,)) + b. If b # 0, this yields
Sing(F2) = @, {0}, or A} (F,) c Sing(F2)

because for any y € Fy, b € F, the map Fy — Fy, z — y + xb, is a
bijection. By Lemma 7.2, Sing(F2) # @ because we assume that Fo
is geometrically irreducible and not geometrically trivial.

If f =X and b # 0, the geometric isomorphism (33) becomes
L) -n(X-)+aX) = Lx(g(X-b)/g(X))-

Since the Kummer sheaf is tame while the Artin-Schreier sheaf is not, we
must have x = 1 or z — g(xz —b)/g(x) constant on F,. If x = 1, then

x — h(z) — h(z — b) + ax is constant on F,
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ie. h(z) = —ab™'2?/2 + ax/2 + constant. On the other hand, if x
g(z —b)/g(x) is constant, then g is constant.

The case with a geometric isomorphism [+a]*G = D(G)®Lx) is similar.

(]

7.6.2. Sums of the form (0).

Proposition 7.13. Let f € Q(X) and let Zy be the set of zeros of f' in C.
We assume that either

-~ (H): ky = |Zp| is even, f = Zzer/ f(2) =0, and if s —s2 = s3— 354
with s; € f(Zf/), then s1 = 83,89 = S4 Or S| = S9,83 = S4.

~ (H"): fis odd, and if sy — sy = s3 — s4 with s; € f(Zp), then
81 = 83,892 = S84 Or 8] = 82,83 = S4 O S1 = —S84,89 = —S3.

For q large enough, there exists an {-adic sheaf Gy 4 over Fy with trace func-

tion
Ly (Bl |,
! \/a yequ < p ) ( - ]Fq)

Moreover, there exist Weil numbers g € Qp of weight 0 such that the family
of L-adic sheaves (g ® Gy q)q is coherent, with monodromy group SLy, (C) if
(H) holds, and Spy,, if (H') holds (in which case ag = 1).

Proof. The construction of Gy, is done in | , Theorem 7.9.4, Lemmas
7.10.2.1, 7.10.2.3] and the computation of monodromy groups in | ,
7.9.6, 7.9.7, 7.10].

By Section 7.2, we get Ggeom = Glarith = Spkf (C) in the (H') case. In
the (H) case, we use the determination (geometrically) of the determinant
of G4 from | , 7.10.4]: there is a geometric isomorphism

det(Grq) = Ly(-px) ® Ly,
where x = ng for xo the character of order 2 of qu and f is viewed in F,.

Under (H) or (H'), this sheaf is geometrically trivial, and it suffices to apply
| , Proposition 3.2.3|.

It remains to show the independence of shifts. We consider the case of a
geometric isomorphism

[+al*Grq = Grg® L (34)
for £ a rank 1 sheaf and a € Fy, the argument with D(G,) being similar.
We adapt the multiplicative case treated in the proof of | , Théoréme
2.3]. By Lemma , since Gy 4 is lisse on G,;,, we must have Sing(L) =
{0, —a, 0} or {0,—a}. Moreover, by | , 7.5.4(5)|, the ramification of £
at 0 and —a is tame. By | , 7.9.4], Gy 4 as Io-representation is

G14(2) = D (g0 ® Lr.x)
zZE€ f!

where x is a multiplicative character, and we view Z; in F,. Hence, by
| , Lemma 1.3| all the breaks are at 1 and as representations of the wild
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inertia group P, we have

Grq(0) = D Ly(rz)x)-
ZEZf/

We distinguish two cases:

— If oo ¢ Sing(L), then Lemma implies that there is a multi-
plicative character x; such that

L=~ £x1((X+a)/X)'

Hence, there exists some § € C of unit norm such that

BY e (Hﬂy))) v (tr(x;:(y)))m <x;>

yelFy yely

forallz e Fy. If a # 0, taking z = —a gives Bq = 0, a contradiction.

— Assume that oo € Sing(L). By | , Lemma 1.3], Swany (L) €
{0, 1} because all the breaks of G, at oo are at 1. If Swane, (L) = 1,
the break-depression lemma | , 8.5.7) implies that £ =~ (tame at 00)®

Lypx) for some b € F. On the other hand, £ is by definition tame at
o if Swang, (£) = 0. In both cases, the restriction of the isomorphism
(34) to Py, gives

D Loexra) = D Lo mx)
ZEZf/ ZGZf/

for some b € F,. Thus the sets {f(2)(X +a):z€ Zp} and {(f(2) +
b)X : z € Zp} are equal, which implies that a = 0 (and b = 0).

U
Remark 7.14. Lemma does not apply here because Fj is trivial.
Ezamples 7.15. The following examples are given in | , p- 229, | ,
p. 7] and | , 7.10]:
(1) The polynomial f = aX"*! + bX with a,b,r € Z and ab # 0 verifies
k¢ = |r| and

(H) if |r] =3 odd,
(H') ifr # 0 even.

(2) Let g € Z[X] be monic of degree r with full Galois group &, (a
“generic” condition by | ), and let f € Q[X] be the unique
primitive of g with }}_; f(a;) = 0, where ay,. .., a, are the zeros of
f. Assuming that r > 6 is even, we have that (H) holds for f and
kf=n.

(3) F];r n = 3 and a € Z nonzero, the polynomial f = X™ —naX satisfies
(H'), and kf =n — 1.

7.6.3. Sums of the form (1) with f = X, x = 1, h polynomial.
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Proposition 7.16. Let h = > ja, X' € Z[X] be a polynomial of degree
n = 3. For p large enough (depending on h), there exists an £-adic sheaf Gy, 4
over Fy of rank n — 1 corresponding to the trace function

—Ly (ly+h@)y
xH\/@y;q <p ) (xeT,).

If an—1 = 0 and n ¢ {7,9}, there exist Weil numbers oy € Qq of weight 0
such that the family (g ® Gp q)q is coherent, with monodromy group:
(1) SLy—1(C) if n — 1 is odd,
(2) If n is odd:
— Sp,,_1(C) if h has no monomial of even positive degree,
— SL,,—1(C) otherwise.
Moreover, ag = 1 in the symplectic case.

Proof. The construction of G, , and the computation of its geometric mon-
odromy group can be found in | , Section 7.12] and | |. In the
symplectic case, Section gives that Ggeom = Garith = Sp,,—1(C). In the
special linear case, the hypothesis a,—1 = 0 implies that the geometric de-

terminant of G is trivial by | , Section 7.12], and the statement follows
from Section

The independence of shifts follows directly from Lemmas and ,
similarly to Kloosterman sheaves. (]

Ezample 7.17. For the Birch sums (5), we have h = X2 and the correspond-
ing monodromy group is Spy(C) = SLa(C).

7.6.4. Sums of the form (1) with f polynomial, x # 1.

Proposition 7.18. Let

— heQ(X) with a pole of order n > 1 at .

— f € Z[X] nonzero of degree d with (d,n) = 1.

— g € Q(X) nonzero.

= X a character of ¥y of order r = 2, with the order of any zero or pole
of g not divisible by r.

For p large enough (depending on f, g, h), there exists an {-adic sheaf G, over
[F, corresponding to the trace function (1). Assuming that n > 2d, that f,h
are odd and that

(1) there exists L € Q(X) even or odd with L(x)" = g(x)g(—z),

(2) either g is nonconstant or h ¢ Z|X],

(3) either N = rank(G) # 7,8 orn—d # 6,
then there exist oy € {£1} such that the family (aq ® Gy)q is coherent, with
monodromy group Spx(C) if L is odd (in which case ay = 1) and SOn(C)
if L is even.

Proof. The construction and the computation of the geometric monodromy
group of G, can be found in | , 7.7, 7.13 (Sp-example(2)) and 7.14 (O-
example(2))]. Section 7.2 show the existence of a; € {1} so that Ggeom (0g®
Gq) = Garith (g ® G;) is as stated.



Gaussian distribution of short sums of trace functions 39

We show the independence of shifts. Let us assume that there is a geomet-
ric isomorphism of the form (8) for G with @ # 0. By Lemmas and ,
we have Sing(F») = {0} or Al(F;) < Sing(F2). Since cond(F2) is bounded
independently from ¢, the last possibility is excluded for ¢ large enough.
Let us then assume that Sing(F2) = {oo}. Because f is a polynomial, we
have Sing(F1) < {oo}. Since the Kummer sheaf is tamely ramified every-
where while the Artin-Schreier sheaf is totally wild at all ramified points,
this implies that h € Z[X] and that g is constant. O

7.7. Families of hyperelliptic curves.

Proposition 7.19. Let f € Z[X] be a squarefree polynomial of degree 2g >
2. For q large enough, we consider the family of smooth projective models of
the affine hyperelliptic curves over IFy of genus g given by

X, y2 = f(z)(z — 2),

parametrized by z € Fy, which are nonsingular when z ¢ Zys 4, for Zy, < Fq
the set of zeros of f in Fy. There exists a geometrically irreducible (-adic
sheaf Fyq over Fy of rank 2g, with trace function

1— | X, (F
t]-'(Z) _ Q+ q1|/2 ( Q)| (Z ¢ Zf,q)'

The family (Fyq)q is coherent with monodromy group Spy,(C).

Proof. For the construction, see | , Section 10.1] or | , Section 4]
(using middle-convolutions). Here, we moreover normalize with a Tate twist
to get a sheaf of weight 0. We have Sing(Fy,) = {00} U Zy and Fy, is
everywhere tame. In particular, cond(Fyq) = 29 + | Z,4|.

By | , Theorem 10.1.16|, the geometric monodromy group is symplec-
tic. Since we normalized, | , Lemma 10.1.9] shows that the arithmetic
monodromy group preserves the sames pairing (without normalization, it is
a symplectic similitude with multiplicator ¢).

It remains to show the independence of shifts. By | , 10.1.13], at any
z € Z;,, the quotient V /V!= is the trivial (one-dimensional) I,-representation,
for V.= (Ftq)7. Let us assume that there exists an isomorphism of the

form (8) for Fy4. By Lemma , if ¢ is large enough, there exists
z € Sing(F) n AL(F,) such that V1= = 0, a contradiction. O
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